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Abstract
Global patterns of collective motion in bird flocks, fish schools, and human crowds are thought to emerge from local interactions within a 
neighborhood of interaction, the zone in which an individual is influenced by their neighbors. Both metric and topological neighborhoods 
have been reported in animal groups, but this question has not been addressed for human crowds. The answer has important 
implications for modeling crowd behavior and predicting crowd disasters such as jams, crushes, and stampedes. In a metric 
neighborhood, an individual is influenced by all neighbors within a fixed radius, whereas in a topological neighborhood, an individual is 
influenced by a fixed number of nearest neighbors, regardless of their physical distance. A recently proposed alternative is a visual 
neighborhood, in which an individual is influenced by the optical motions of all visible neighbors. We test these hypotheses 
experimentally by asking participants to walk in real and virtual crowds and manipulating the crowd’s density. Our results rule out a 
topological neighborhood, are approximated by a metric neighborhood, but are best explained by a visual neighborhood that has 
elements of both. We conclude that the neighborhood of interaction in human crowds follows naturally from the laws of optics and 
suggest that previously observed “topological” and “metric” interactions might be a consequence of the visual neighborhood.
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Patterns of “flocking” or collective motion in animals and humans emerge from local interactions between individuals in a neighborhood of 
interaction. Some species appear to interact with all neighbors within a fixed distance, in a metric neighborhood, whereas others seem to 
interact with a fixed number of nearest neighbors in a topological neighborhood. Alternatively, interactions in a visual neighborhood would 
be guided by the optical motions of visible neighbors. We experimentally tested these hypotheses for humans by asking participants to 
walk in real and virtual crowds. The results rule out a topological neighborhood, are closer to a metric neighborhood, but are best explained 
by a visual neighborhood. This finding has important applications to modeling crowd dynamics and predicting crowd disasters.
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Introduction
Large-scale patterns of coordinated motion are observed in many 
animal groups, including flocks of birds, schools of fish, herds of 
mammals, and crowds of humans (1–5,). It is widely believed 
that such global patterns of collective motion emerge from many 
local interactions between individuals in a process of self- 
organization (1, 6, 7). Understanding collective motion thus de
pends on characterizing these local interactions (8, 9). First, what 
are the rules of engagement that govern how an individual interacts 
with a neighbor? Second, what is the neighborhood of interaction over 
which these rules operate and the influences of multiple neighbors 
are combined? Here we aim to characterize the neighborhood of 
interaction in human crowds.

Many mathematical models of collective motion assume rules of 
engagement based on hypothesized forces of attraction, repulsion, 

and velocity alignment (10–14). Such models—including our own 
(15)—typically average the influence of all neighbors within a metric 
neighborhood or zone of fixed radius (Fig. 1A, dotted boundary), with 
neighbor influence often decreasing with metric distance (15–17). In 
contrast, others have proposed a topological neighborhood (18–22) 
(Fig. 1A, dashed lines) in which an individual is influenced by a fixed 
number of nearest neighbors, regardless of their metric distance, 
and neighbor influence may decrease with ordinal rank. All of these 
models can be described as “omniscient” because they assume the 
physical positions and velocities of all neighbors as input. We com
pare them with a new visual neighborhood model (23) (Fig. 1C) based 
on an embedded view in a crowd (24–28), with elements of both 
metric and topological distances (29).

Evaluating these hypotheses is nontrivial, for metric distance 
(number of meters) and topological distance (ordinal rank) are 
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naturally correlated. Yet the two hypotheses can be dissociated by 
varying group density (Fig. 1A and B). The metric hypothesis pre
dicts that velocity alignment should depend on density, because 
the influence of neighbors decreases with their physical distance 
(shading). In contrast, the topological hypothesis predicts no ef
fect of changes in density, because neighbor influence only de
pends on ordinal rank (dashed lines). Finally, the visual 
hypothesis (Fig. 1C) predicts that alignment should depend on 
both the distance and configuration of neighbors, which deter
mine optical velocities and visual occlusion (23).

Observational studies of bird flocks have found empirical sup
port for the first two hypotheses. Starlings appear to possess a 
topological neighborhood (2, 18), for the ordinal range of inter
action remains constant at six to seven neighbors despite natural 
fluctuations in flock density. In contrast, roosting chimney swifts 
appear to have a metric neighborhood (30), for alignment is max
imal at 1.4 m despite variations in density, and alignment with the 
nth nearest neighbor depends on its metric distance (see also (31)). 
Alternatively, in fish schools, a study of golden shiners found that 
data were best fit by a visual neighborhood (25). Other analyses of 
small groups of mosquito fish and rummy-nose tetra have found 
that individuals respond to just one or two neighbors at a time, 
who may change with shifts of attention (32–34); modeling shows 
that this strategy is sufficient to generate collective motion (24, 34, 
35). Humans, however, have been found to combine the influen
ces of many neighbors (6, 36), independent of attention (37), and 
thus we do not pursue the latter hypothesis.

To date, the metric and topological hypotheses have not been 
tested in humans, for the existing data do not distinguish them. 
The answer is of central importance for modeling crowd dynam
ics, simulating emergency evacuations, and predicting crowd dis
asters such as jams, crushes, and stampedes (3, 38–41). We test 
the hypotheses experimentally by manipulating the density of vir
tual and real crowds, perturbing the heading (walking direction) of 
a subset of neighbors, and measuring the participant’s heading re
sponse. The metric and visual hypotheses predict that varying the 
density of neighbors will influence the heading response, whereas 
the topological hypothesis predicts that density will have no 
effect.

Specifically, we manipulated the distances of perturbed and 
unperturbed neighbors in a virtual crowd so that the metric hy
pothesis predicts a stronger (first experiment) or weaker (second 
experiment) heading response with a higher density. We find 

significant effects of density in the predicted directions. To gener
alize these results to real crowds (third experiment), we manipu
lated the density of human “swarms” and analyzed the degree of 
alignment. We find greater alignment in high-density swarms, 
whether plotted as a function of metric or topological distance.

These findings rule out a strictly topological neighborhood. The 
direction of the density effect is predicted by a metric neighbor
hood model (15), but the quantitative results are best predicted 
by a visual model (23). We conclude that the neighborhood of 
interaction in humans is not topological, depends on metric dis
tance, and is best explained by visual information.

Results
We begin by describing models of metric, topological, and visual 
neighborhoods, then test them experimentally.

Neighborhood models
Metric model
To describe a metric neighborhood, we used our empirical model 
of local interactions in human crowds (15). The rules of engage
ment were derived from experiments on following in pairs of pe
destrians, which found that the follower matches the heading 
direction and speed of the leader. The neighborhood of interaction 
was derived from previous experiments showing that a pedestrian 
is influenced by a weighted average of neighbors (Eqs. 1a and 1b), 
where the weight decays exponentially with metric distance (Eq. 
1c):

ϕ̈p = −
k
n

􏽘n

i=1

wisin(ϕp − ϕi) (1a) 

r̈p = −
c
n

􏽘n

i=1

wi(ṙp − ṙi) (1b) 

wi =
a

eωdi + a
(1c) 

To control heading (Eq. 1a), a pedestrian p’s angular acceleration 

(ϕ̈p) is proportional to the mean difference between p’s current 

heading (ϕp) and that of each neighbor (ϕi), where n is the number 

of neighbors within a 5-m radius and a 180° field of view. To con
trol speed (Eq. 1b), an analogous equation governs p’s radial accel
eration (r̈p). The coupling strength parameters k = 3.15 and c = 3.61 

A CB

Fig. 1. Testing the metric, topological, and visual hypotheses. A) High density: Soft metric neighborhood (dotted boundary) predicts decreasing influence 
of neighbors (shading) with metric distance from a pedestrian (bottom), whereas topological neighborhood (dashed lines) predicts decreasing influence 
with a neighbor’s ordinal rank. Metric and topological distances are correlated here. B) Low density: The hypotheses are dissociated by manipulating 
crowd density. The metric neighborhood predicts that increasing distance will weaken neighbor influence, whereas the topological neighborhood 
predicts their influence will remain constant. C) In a visual neighborhood, influence decreases with both metric distance and visual occlusion. Contrary to 
the topological model, influence depends on density; contrary to the metric hypothesis, the model generalizes to crowds with different densities and 
configurations. Modified from Dachner, et al., 2022 with permission under the guidelines of Royal Society Publishing.
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were fit to previous data on pedestrian following (42). The weight 
of each neighbor wi (Eq. 1c) decreases as a logistic function of met
ric distance di, where the decay rate ω=1.3 and constant a = 9.2 
were fit to a sample of human “swarm” data (15). These parameter 
values were held fixed in the present simulations.

This results in a metric neighborhood with a “soft” radius that 
asymptotes to zero around 4–5 m, defining the range of inter
action (dotted boundary in Fig. 1). According to the model, p’s 
heading direction stabilizes on the mean heading and speed in 
the neighborhood. The physical proximity of neighbors deter
mines the strength of attraction and hence the turning rate and 
relaxation time of the heading response.

Topological model
A topological neighborhood is similarly based on a weighted aver
age of neighbors (Eqs. 1a and 1b), but the weight decays linearly 
with the topological distance of each neighbor (ordinal rank Ri) ra
ther than metric distance:

wRi = mRi + b (2) 

We used linear regression to fit the data in the high-density 
“swarm” condition, yielding slope m = −0.07 and intercept b =  
1.03 (R2 = 0.97) (see Supplementary Data S3 and Fig. S5). The topo
logical hypothesis holds that this decay rate is independent of 
density.

Visual model
The visual model (23) is also based on a weighted average of neigh
bors, but it replaces omniscient variables (neighbor distance or 
rank, heading, and speed) with visual variables (angular velocity, 
optical expansion, and visibility):

ϕ̈p =
1
n

􏽘n

i=1

vi[c1(cos βi)ψ̇i − c2(sin βi)θ̇i] (3a) 

r̈p =
1
n

􏽘n

i=1

vi[− c3(sin βi)ψ̇i − c4(cos βi)θ̇i] (3b) 

Specifically, pedestrian p’s heading is controlled by canceling the an

gular velocity ψ̇i and expansion rate θ̇i (rate of change in visual angle) 
of all visible neighbors (i = 1 . . . n). These two optical variables trade 
off as cosine and sine functions of the neighbor’s eccentricity βi in 
the field of view, which is centered on p’s heading direction. For ex
ample, if a neighbor directly ahead of p turns right, this generates a 
positive angular velocity but little optical expansion, whereas if a 
neighbor on p’s left turns right, this generates a positive optical ex
pansion but little angular velocity (see ref. (23) for details). A comple
mentary equation controls p’s speed (Eq. 3b). The constants 
c1 = 14.38, c2 = 59.71, c3 = 0.18, and c4 = 0.72 were fit to previous 
data on pedestrian following (43) and held fixed.

Critically, optical velocities (ψ̇i, θ̇i) decrease with metric dis
tance d as tan−1(1/di), in accordance with Euclid’s law of visual an
gle, thus eliminating an explicit distance term (Eq. 1c). In addition, 
nearer neighbors tend to visually occlude farther neighbors, de
pending on their visual directions, ordinal ranks, and metric sep
aration in depth (25, 29, 44). The model weights each neighbor in 
proportion to their visibility, which ranges from vi = 0 (fully oc
cluded) to vi = 1 (fully visible); neighbors below a visibility thresh
old vt < 0.15 (fit to experimental data) are set to zero, and n is the 
number of neighbors at or above threshold. The neighborhood’s 
range of interaction is not a fixed radius, but limited by the com
plete occlusion of farther neighbors, which varies with density 
and crowd configuration (29).

The visual model thus depends on both metric and topological 
distances, but the neighborhood of interaction is determined by 
the laws of optics. The model stabilizes on the mean heading 
and speed in the visual neighborhood, and the attraction strength, 
turning rate, and relaxation time are determined by the visibility 
of neighbors and the magnitudes of their optical motions.

Experiments in virtual crowds
We tested the neighborhood hypotheses by varying the density of 
a virtual crowd. This allowed us to manipulate the behavior of vir
tual neighbors, who moved on prescribed paths, and measure 
their influence on a participant’s walking trajectory. Participants 
walked freely in a 12 m × 14 m area while viewing a group of 12 vir
tual humans in a mobile virtual reality headset. We asked partic
ipants to walk with the virtual crowd and treat them as if they 
were real people. During each trial, we perturbed the heading 
(walking direction) of a subset of virtual neighbors, all to the left 
(−10°) or to the right (+10°), and recorded the participant’s walking 
direction (the “heading response”).

High- and low-density crowds were created by positioning vir
tual humans at prescribed initial distances from the participant 
and then randomly jittering their positions (Fig. 2). On each trial, 
the virtual crowd appeared with their backs to the participant 
(Fig. 2A and B); after 1 s, a verbal “begin” command was played 
and the crowd accelerated forward for 3 s to a walking speed of 
1.0 m/s; 2 s later, the subset’s heading was perturbed, and the dis
play continued for another 8 s. The participant’s head position in 
the horizontal plane was recorded, filtered, and used to compute 
the time series of heading for each trial. The final heading on 
each trial was the mean value between 4 and 6 s postperturbation. 
A mean time series was computed for each participant in each 
condition for analysis.

Heading responses increase with density when random 
neighbors are perturbed
In the first experiment, the heading of a random subset of the vir
tual neighbors (0, 3, 6, 9, or all 12) was perturbed (±10°) on each tri
al. In the high-density condition, five neighbors were initially 
positioned at 1.5 m and seven at 3.5 m (Fig. 2C); in the low-density 
condition, the initial distances were 3.5 and 7.5 m (Fig. 2D). Each 
participant (N = 10) received 8 trials in each of the 10 conditions. 
Speed was perturbed (±0.3 m/s) in a separate condition and 
yielded similar results (see Supplementary Data S1 and Fig. S1).

According to the metric model (Eq. 1), the participant is attracted 
to the mean heading in the neighborhood, which increases with the 
percentage of perturbed neighbors. Because nearer neighbors have 
higher weights, the model predicts that the attraction strength will 
be greater, the turning rate faster, and the relaxation time shorter 
at higher density. Consequently, the mean final heading after 4–6 s 
should be larger in the high-density condition than the low-density 
condition, and this difference should increase with the percentage of 
perturbed neighbors (Fig. 3A, dotted curves). In contrast, the topo
logical model predicts no difference between the high- and low- 
density conditions (see Supplementary Data S1 and Fig. S2).

The results appear in Fig. 3A (solid curves). As the number of 
perturbed neighbors increases, mean final heading becomes lar
ger in the high-density condition (blue) than the low-density con
dition (red). A linear mixed effects (LME) regression analysis found 
that this interaction was significant: the effect of density in
creased with the number of perturbed neighbors (χ2(1) = 6.111, 
P = 0.0134). This significant dependence on density is contrary to 
the topological hypothesis. The metric model (dotted curves) is 
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closer to the human data, although it only lies within the 95% CI in 
four of the eight perturbation conditions, and undershoots the 
data in the low-density condition (red).

Attraction strength is indicated by the time series of heading: 
the postperturbation slopes are steeper in the high-density condi
tion (Fig. 3B, blue curves) than the low-density condition (Fig. 3C, 
red curves), increasingly so as more neighbors are perturbed. An 
LME regression showed that this three-way interaction (density ×  
time × perturbed neighbors) is significant (χ2(1) = 4.163, P = 0.041), 
confirming that the turning rate is faster in the high-density con
dition, as predicted by the metric model. In contrast, the signifi
cant dependence on density is inconsistent with the topological 
hypothesis. (Regression results appear in Tables S1 and S4.)

Model simulations. To compare the metric model (Eq. 1) with the 
human data quantitatively, we simulated each experimental trial 
with no free parameters. The model agent was initialized with the 
participant’s position and heading 2 s before the perturbation, the 
distance and heading of virtual neighbors were taken as input on 
each time step, and a time series of the agent’s heading was com
puted. We then calculated the agent’s mean time series in each 
condition and compared it with the participant’s mean time series 
in the corresponding condition using the root of the mean squared 
error (RMSE).

Time series of heading for the metric model (cyan curves) are 
plotted together with the human data in Fig. 3B (high-density con
dition) and Fig. 3C (low-density condition). The model again ap
pears to undershoot the data at low density. The mean RMSEm 

for perturbation trials was 2.06°.
We repeated these simulations using the visual model (Eq. 3). In 

this case, the input to the model agent was the angular velocity, 
expansion rate, eccentricity, and visibility of each neighbor in 
the participant’s field of view, calculated from their position, 
heading, and speed at each time step. The model’s mean final 
heading (Fig. 3D, dashed curves) is closer to the human data, par
ticularly in the low-density condition (red curves), and is within 
the 95% CI of the data in six of the eight perturbation conditions. 
The mean time series for the visual model are plotted together 
with the human data in Fig. 3E (high density) and Fig. 3F (low dens
ity). The mean RMSEv is 1.96°, closer to the human data than the 
metric model. To compare the relative strength of evidence for 
the two models, we computed Bayes factors, yielding anecdotal 
evidence favoring the visual model overall (BFvm = 1.42), with sub
stantial evidence in the low-density condition (BFvm = 8.85). The 
visual model thus explains the human data as well as or better 
than the metric model.

Is this good model performance? Given the inherent noise in 
the data due to gait oscillations and measurement error, we esti
mated the limit on best performance by computing the RMSE 

A B

C D

E F

Fig. 2. Virtual crowd displays. Participant’s view in the A) high-density and B) low-density conditions of the first experiment. Bird’s-eye view in the C) 
high-density and D) low-density conditions of the first experiment and E, F) the second experiment. “X” indicates the participant’s position.
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between the participant mean time series in the control condition 
(0 perturbed neighbors) and a heading of 0°. This yielded a mean 
RMSE of 1.21°, indicating that the visual model is only 0.75° 
from the limit, although not perfect (BF1v > 100). Conversely, to es
timate the worst performance for a model that does not respond 
to the input, we computed the RMSE between the participant 
mean time series in the perturbation conditions and a heading 
of 0°. This yielded a mean RMSE of 3.98°, indicating that visual 
model is much better than doing nothing (BFv0 >> 100). The visual 
model is thus near the high end of possible model performance, 
close to the human data.

Conclusion. The first experiment finds that participants have a 
stronger heading response in a higher-density crowd. Specifically, 
when perturbed neighbors are in the majority and in closer proxim
ity to the participant, they exert a greater influence, producing 
a faster turning rate and a larger final heading. This significant 
density dependence contradicts the topological hypothesis, which 
predicts that density should have no effect. The direction of the 
density effect is consistent with the metric hypothesis, but the 
data are better predicted by the visual model.

Heading responses decrease with density when nearest neighbors 

are perturbed. The first experiment found that the heading re
sponse increased with crowd density. But if the response depends 
on metric distance, we should be able to manipulate the proximity 
of unperturbed neighbors to elicit the opposite effect: a decrease in 
the heading response with higher density. The second experiment 

tested this prediction. Specifically, we held the metric distances of 
the four nearest neighbors’ constant and varied density by ma
nipulating the distances of the other eight neighbors (Fig. 2E and 
F). When the near neighbors are perturbed, the metric hypothesis 
predicts a weaker response in the high-density condition than the 
low-density condition. In contrast, the topological hypothesis pre
dicts that the distance of the unperturbed neighbors should have 
no effect.

In this experiment, the heading of the nearest neighbors (0, 2, 
or 4) was always perturbed (±10°). The four nearest neighbors 
were positioned at fixed distances (1.5, 1.7, 1.9, and 2.1 m) before 
jittering, while the remaining eight neighbors appeared at mod
erate distances in the high-density condition (2.3 to 3.7 m, 
Fig. 2E), and far distances in the low-density condition (3.1 to 
11.1 m, Fig. 2F), and were never perturbed. Each participant 
(N = 12) received 16 trials in each of the 6 conditions. The speed 
of the virtual crowd was increased slightly to a more comfort
able walking speed (1.15 m/s), so the display continued for 
5.4 s postperturbation and mean final heading was recorded be
tween 2.4 and 4.4 s. Otherwise, the procedure was the same as 
before.

The metric model predicts that the heading response should be 
reduced in the high-density condition, because the unperturbed 
neighbors are closer and more influential. In contrast, in the low- 
density condition, the unperturbed neighbors are farther away 
and less influential, so the response to the perturbed neighbors 
should be stronger, yielding a faster turning rate and a larger final 
heading. In other words, the density effects should be the opposite 
of those observed in the first experiment.
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Fig. 3. Results and simulations of the first experiment. Top row, metric model: A) mean final heading for humans and metric model as a function of the 
number of perturbed neighbors. Shaded regions represent the 95% CI of the human data. The error bars in plots A) and D) represent the 95% CI for the 
model. B) High-density condition: mean time series of heading for human data and metric model; curves represent the number of perturbed neighbors. C) 
Low-density condition: same. Bottom row, visual model: D–F) same data with visual simulations.
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The results for mean final heading appear in Fig. 4A. It is clear 
that the density effect is reversed: final heading is now smaller 
in the high-density (solid blue curve) than the low-density con
dition (solid red curve). An LME regression confirmed a signifi
cant two-way interaction, such that the effect of density 
grows with the number of perturbed neighbors (χ2(1) = 5.54, 
P = 0.0186). This finding is similar to the first experiment but in 
the opposite direction, as expected on the metric hypothesis. 
On the other hand, the significant density effect contradicts 
the topological hypothesis (See Figure S2). Yet the metric model 
(dotted curves) overshoots the data by a wide margin at both 
densities, lying outside the 95% CI in three of the four perturb
ation conditions.

The effect of density on attraction strength is also reversed, for 
the slopes of the heading time series are shallower in the high- 
density (Fig. 4B, blue curves) than the low-density condition 
(Fig. 4C, red curves). An LME regression found that the three-way 
interaction (density × time × number of perturbed neighbors) was 
significant (χ2(1) = 4.269, P = 0.0388), confirming a slower turning 
rate in the high-density condition. In sum, the density effects 
were reversed, contrary to the topological hypothesis, but in the 
direction predicted by the metric hypothesis. (Regression results 
appear in Tables S2 and S4.)

Model simulations. We simulated heading on each trial with the 
metric model, as before. The mean time series of heading for the 
model (cyan curves) are plotted together with the human data 
in the high-density (Fig. 4B) and low-density (Fig. 4C) conditions. 
The mean RMSE was 1.48° for perturbation trials (note the smaller 
error due to smaller turns in this experiment). Although the 

metric model generates the reverse density effect, it systematical
ly overshoots the data.

Why might this be so? The metric model approximates the ef
fect of distance with a fixed exponential decay term that was fit to 
a sample of human swarm data (15). However, it does not take ac
count of the actual optical velocities and visual occlusion in a par
ticular crowd and thus fails to generalize to other densities and 
configurations of neighbors. Because the visual model is predi
cated on these optical variables, it should generalize to the novel 
crowds in the second experiment.

We simulated the data with the visual model (Eq. 3), as before. 
The model’s mean final heading appears in Fig. 4D (dashed 
curves). Importantly, it closely predicts the reverse density effect, 
falling within the 95% CI for the data in all conditions. The mean 
time series of heading for the model are also closer to the human 
data in both high-density (Fig. 4E) and low-density (Fig. 4F) condi
tions. Overall, the mean RMSE is 1.18° for the visual model, which 
is very strongly favored over the metric model (BFvb = 56.1). In 
addition, the performance of the visual model is only 0.43° from 
the inherent noise limit (mean RMSE = 0.75°), if not perfect (BF1v  

> 100), and it is much better than doing nothing (mean RMSE =  
2.55°, BFv0 > 100). A visual neighborhood thus explains the human 
data better than a metric or topological neighborhood.

Conclusion. The second experiment found a significant density 
effect once again, but in the opposite direction of the first experi
ment. This density dependence contradicts the topological hy
pothesis. The reversed density effect is consistent with the 
metric hypothesis, but the model overshoots the data in both 
high- and low-density conditions. Both experiments are best 
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Fig. 4. Results and simulations of the second experiment. Top row, metric model: A) mean final heading for humans and metric model as a function of 
the number of perturbed neighbors. Shaded regions represent the 95% CI of the human data. The error bars in plots A) and D) represent the 95% CI for the 
model. B) High-density condition: mean time series of heading for human data and metric model; curves represent the number of perturbed neighbors. C) 
Low-density condition: same. Bottom row, visual model: D–F) same data with visual simulations.
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explained by the visual model, which generalizes to new density 
and occlusion conditions because the neighborhood is based on 
optical variables rather than physical distance.

Human “swarm” experiment
To test whether our findings with virtual crowds extend to real 
crowds, a third experiment measured alignment in human 
“swarms.” Three groups of participants (N = 10, 16, and 20) were 
instructed to walk about a large tracking area (14 m × 20 m), veer
ing randomly left and right but staying together as a group, for 
2-min trials. We manipulated the initial density of the group 
(high and low) and analyzed the difference in heading between 
pairs of participants.

Each group participated in two trials at each density, for a total 
of 12 trials. Head positions in the horizontal plane were recorded 

with 16 motion-capture cameras, filtered, and used to compute 
the heading direction of each participant in each time step. This 
yielded approximately 11 min of usable data (frames in which 
all head positions were successfully recovered). We then meas
ured the absolute heading difference (|Δϕi,j|) and metric distance 
(di,j) between pairs of participants i and j in each time step.

Alignment is greater in high-density crowds
According to both the metric and topological hypotheses, the ab
solute heading difference between neighbors should increase with 
metric distance, because metric and topological distances are cor
related. But the metric hypothesis predicts a smaller heading dif
ference (greater alignment) in the high-density condition, 
whether the data are plotted as a function of metric or topological 
distance. In contrast, the topological hypothesis predicts greater 

Fig. 5. Occupancy probability density functions (PDFs) for all human swarm trials, plotted relative to the focal participant nearest the centroid of the 
swarm. A) High-density condition (mean 2.1 p/m2), six trials, 4.9 min of data. B) Low-density condition (mean 1.7 p/m2), six trials, 6.2 min of data. Color 
temperature in the heat maps represents the discrete probability density of observing a participant in each 0.2 m × 0.2 m cell, with focal participant p at 
the origin, heading upward. Larger area of hot reds in A) confirms the density manipulation. C) 1D PDF of occupancy as a function of distance from the 
focal participant in the high- (blue) and low- (red) density conditions.
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alignment in the low-density condition when plotted as a function 
of metric distance, because the n nearest neighbors interact over 
longer distances. But any effect of density should disappear 
when the data are plotted as a function of topological distance.

We first checked that the density manipulation was successful 
by plotting a discrete probability density function for occupancy 
in each condition (Fig. 5). A shift in color temperature between 
panels is apparent, indicating that a greater density was main
tained in the high condition (Fig. 5A, hot reds) than the low condi
tion (Fig. 5B, cooler oranges and yellows). The mean measured 
density (participants per square meter in every frame of data) 
was 2.10 ± 0.004 p/m2 (SEM) in the high condition and 1.72 ±  
0.005 p/m2 (SEM) in the low condition. An LME regression analysis 
confirmed a significant effect of the high/low manipulation on 
measured density (χ2(1) = 5056.8, P < 0.001), although a significant 
interaction (high/low × time) indicated that the difference 

decreased over the course of a 2-min trial (χ2(1) = 2378.5, 
P < 0.001) (see Fig. S3).

To visualize the degree of alignment, we plotted heat maps of 
the mean absolute heading difference (|Δϕi,p|) between the “focal” 
participant p closest to the group centroid and each neighbor i 
(Fig. 6). The metric hypothesis predicts greater alignment in the 
high-density condition (25, 44), and indeed there is a larger region 
of cold blues (small heading differences) in the high-density 
(Fig. 6A) than the low-density (Fig. 6B) condition. On the topologic
al hypothesis, one would expect the opposite, for the n nearest 
neighbors interact over longer distances in the low-density 
condition.

We then analyzed the dependence of alignment on metric dis
tance. We computed the absolute heading difference between all 
pairs of participants i and j (|Δϕi,j|), pruned extreme cases unlikely 
to interact (heading difference >50° or distance >4.5 m; 21% of 

Fig. 6. Heat maps of mean heading difference between the focal participant and each neighbor in human swarms. A) High-density condition, six trials, 
4.9 min of data. B) Low-density condition, six trials, 6.2 min of data. Cells were only included in the heat map if they had at least 500 samples or 8.33 s 
worth of data. Color temperature represents the mean absolute heading difference |Δϕi,p| between the focal participant p nearest the swarm’s centroid 
(plotted at the origin, heading upward) and each neighbor i in the corresponding 0.2×0.2 m cell over all frames. Larger area of cold blues in A) indicates 
greater alignment in the high-density condition. C) 1D PDF of observations as a function of absolute heading difference with the focal participant, 
indicating greater alignment in the high-density (blue) than the low-density (red) condition.
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data), and then calculated the mean difference in consecutive 
10-s time intervals and 0.25-m distance bins. An LME regression 
on heading difference in all trials confirmed a significant effect 
of metric distance (χ2(1) = 1482.1, P < 0.001); specifically, for every 
meter change in distance, there is a 5.45° ± 0.134° (SE) increase 
in the mean heading difference.

To test the neighborhood predictions, we sorted the heading 
differences (|Δϕi,j|) by metric distance (0.25 m bins) or by topologic
al distance (ordinal rank) in each density condition. When plotted 
as a function of metric distance (Fig. 7A), the mean heading differ
ence is smaller (greater alignment) in the high-density condition 
(blue curve) than the low-density condition (red curve). An LME 
regression on heading difference confirmed the density effect 
(χ2(1) = 6.51, P = 0.011), with a mean difference of 5.73° ± 1.37° 
(SE) between the high and low conditions. This finding is consist
ent with the metric hypothesis but contrary to the topological hy
pothesis. However, the interaction between density and distance 
was also significant (χ2(1) = 83.56, P < 0.001), and the two curves 
cross at a distance of 2.75 m, when the mean heading difference 
reaches 25°. At farther distances, the heading difference becomes 
larger at high density than low density, inconsistent with the met
ric hypothesis. This unexpected pattern is consistent with a visual 
neighborhood, for as distance increases, there are more complete
ly occluded neighbors in the high- than the low-density condition 
(29) (see Fig. S4). Because a pedestrian is not influenced by oc
cluded neighbors, the mean heading difference becomes larger 
in the high-density condition.

When replotted as a function of topological distance in Fig. 7B 
(after repruning cases with heading difference >50° or rank >15; 
17% of data), the mean heading difference is again smaller in 
the high-density (blue curve) than the low-density (red curve) con
dition. This result indicates greater alignment between two neigh
bors who are physically closer but ordinally equidistant, 
contradicting the topological hypothesis. An LME regression re
vealed that the density effect is significant (χ2(1) = 9.26, P = 0.002) 
as is the interaction (density × ordinal rank) (χ2(1) = 19.39, 
P < 0.001). (See Table S3.)

Conclusion. The swarm experiment shows that heading align
ment in real human crowds depends on density, whether plotted 
as a function of metric or topological distance. This finding pro
vides decisive evidence against a topological neighborhood. The 
main effect of density is consistent with a metric neighborhood, 
but the density × distance interaction supports a visual 
neighborhood.

Discussion
Previous reports of collective motion in animal groups have found 
that some species, like starlings, are governed by topological inter
actions that depend on ordinal distance, while others, like chim
ney swifts, obey metric interactions that depend on physical 
distance. The present research provides the first evidence that 
the neighborhood of interaction in human crowds is not topologic
al, depends on metric distance, and is best explained by visual in
formation. The metric hypothesis predicts that varying density 
will affect the strength of interaction, because neighbor influence 
is distance dependent. In contrast, the topological hypothesis pre
dicts that varying density will have no effect, because neighbor in
fluence only depends on ordinal rank. The visual hypothesis 
predicts that responses will be influenced by both density, which 
reflects metric distance, and visibility, which reflects ordinal rank.

In three experiments, we found that alignment reliably de
pends on density, specifically the proximity of perturbed and un
perturbed neighbors. When random neighbors were perturbed, 
there was a stronger heading response at high density as the num
ber of perturbed neighbors increased (also a stronger speed re
sponse). Conversely, when only the nearest neighbors were 
perturbed, there was a stronger heading response at low density, 
for unperturbed neighbors were farther away and exerted less in
fluence. Measurements of human swarms also revealed a signifi
cant effect of density: we observed greater alignment at high 
density, regardless of whether the data were plotted as a function 
of metric or topological distance. The pattern of data thus qualita
tively rules out a topological neighborhood, is in the expected 

A B

0

5

10

15

20

25

30

35

40

0.
75 1

1.
25 1.
5

1.
75 2

2.
25 2.
5

2.
75 3

3.
25 3.
5

3.
75 4

4.
25 4.
5

m
ea

n 
he

ad
in

g 
di

ffe
re

nc
e 

(d
eg

)

Metric Distance (.25m bins)

High Density
Low Density

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

m
ea

n 
he

ad
in

g 
di

ffe
re

nc
e 

(d
eg

)

Topological Distance (rank)

High Density
Low Density

Fig. 7. Mean absolute heading difference between all pairs of participants |Δϕi,j| in human swarms, plotted as a function of A) metric distance and B) 
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direction for a metric neighborhood, but is more closely predicted 
by a visual neighborhood.

The visual neighborhood is determined by two factors, de
rived from the viewpoint of a pedestrian embedded in a crowd 
(23). First, when a neighbor changes heading direction or speed, 
this generates corresponding optical motions in the pedes
trian’s field of view. These optical velocities decrease with met
ric distance in accordance with Euclid’s law. Second, near 
neighbors tend to partially occlude far neighbors, such that visi
bility decreases with both ordinal rank and metric separation in 
depth. The neighborhood’s range of interaction corresponds to 
the distance at which nearer neighbors completely occlude all 
farther neighbors and thus varies dynamically with changes 
in density and visibility.

The visual model not only explains the density effects observed 
in the present experiments, it predicts the data in the second ex
periment much better than the metric model (Fig. 4). Whereas the 
omniscient metric model describes the decay with distance using 
a fixed exponential function, the visual model explains this dis
tance dependence based on Euclid’s law and the geometry of occlu
sion. Because it is sensitive to variation in neighbor distance and 
visibility, the model generalizes to crowds with different densities 
and distributions of neighbors. The present results thus provide 
critical support for a visual neighborhood in human crowds.

These findings have important implications for modeling 
crowd behavior and evacuation dynamics. Natural variation in 
crowd density ranges from 0 to 4 p/m2 before physical contact 
(45, 46), an order of magnitude more than the present manipula
tions, implying that topological models would generate large er
rors in crowd simulation. Metric models neglect the effects of 
density on visual occlusion and would also produce significant er
rors (23). Pursuing a visual model promises more realistic simula
tions of crowd dynamics.

It is possible that previously observed topological and metric 
interactions also have a visual basis. Notably, flocks of starlings 
and chimney swifts appear to have a different structure. 
Starlings (18) maintain a spatial configuration by keeping a near 
neighbor in four visual directions in the field of view (±90° azimuth 
and ± 45° elevation). The nearest neighbor in each quadrant 
would project the largest image and tend to occlude farther neigh
bors in the same direction; with some positional drift, this would 
yield a topological neighborhood of four to eight neighbors, con
sistent with the data. In contrast, roosting chimney swifts (30) 
tend to align their velocities, and alignment decreases gradually 
with metric distance, from 1.4 to 4–5 m. Heading responses in 
swifts might thus be governed by the same optical variables as 
in humans (Eq. 3), which decrease with metric distance and occlu
sion. Thus, nominally “topological” and “metric” neighborhoods 
could be a consequence of a visual neighborhood of interaction.

We conclude that the neighborhood of interaction follows nat
urally from the laws of optics. The influence of visible neighbors 
decays with metric distance due to Euclid’s law and is further re
duced by visual occlusion due to ordinal rank until the range of 
interaction is limited by complete occlusion. Previously observed 
“metric” and “topological” interactions may thus be consequences 
of a visual neighborhood.

Materials and methods
Virtual crowd experiments
Participants
Ten participants (5M and 5F) completed the first experiment, and 
12 participants (7M and 5F) completed the second experiment; one 

additional participant was removed from the latter due to tracker 
error during data collection. All participants had normal or 
corrected-to-normal vision and none reported having a motor im
pairment. The research protocol was approved by Brown 
University’s Institutional Review Board, in accordance with the 
principles expressed in the Declaration of Helsinki. Informed con
sent was obtained from all participants, who were paid for their 
participation.

Equipment
The experiments were conducted in the Virtual Environment 
Navigation Lab (VENLab) at Brown University. Participants walked 
freely in a 12 m × 14 m tracking area, while viewing a virtual envir
onment in a wireless stereoscopic head-mounted display (Oculus 
Rift DK1, Irvine CA; 90°H × 65°V field of view, 640×800 pixels per 
eye, and 60 Hz refresh rate). Head position and orientation were 
recorded with a hybrid inertial/ultrasonic tracking system 
(IS-900, Intersense, Billerica, MA) and used to update the display. 
The frame rate in the first experiment varied between 30 and 
60 Hz, as did the tracker sampling rate; in the second experiment, 
the frame rate and sampling rate were constant at 60 Hz. The 
measured display latency varied between 50 and 67 ms.

Displays
The virtual environment consisted of a ground plane with a gray
scale granite texture and a blue sky. A green start pole and a red 
orienting pole (radius 0.2 m and height 3 m) appeared 12.73 m 
apart (the start pole was reduced to 1.3 m in the second experi
ment). The crowd consisted of 12 virtual humans (WorldViz 
Complete Characters) presented within the typical horizontal 
field of view (90°). In the first experiment only, 18 additional vir
tual humans were placed outside the field of view on two concen
tric circles to enhance the sense of immersion if the participant 
turned their head. The human models were animated with a 
walking gait with randomly varied phase. The racially diverse vir
tual crowd contained equal numbers of men and women.

In the first experiment, the 12 manipulated neighbors were ini
tially positioned on two 90° arcs with the participant at the center, 
symmetric about the participant’s initial walking direction (to
ward the orienting pole). The arc radii were r = 1.5 and 3.5 m in 
the high-density condition or 3.5 and 7.5 min the low-density con
dition. Five neighbors were placed at equal intervals on the near 
arc and seven on the far arc. In the second experiment, the four 
nearest neighbors appeared at fixed initial distances (on arcs 
with r = 1.5, 1.7, 1.9, and 2.1 m), and the nearest two or all four 
of them were perturbed. The other eight neighbors appeared on 
separate arcs spaced 0.2 m apart in depth (r = 2.3, 2.5, … 3.7 m) 
in the high-density condition or 1 m apart in depth (r = 3.1, 4.1, 
… 11.1) in the low-density condition. The eccentricity θ of each 
neighbor was randomly selected from six equally spaced points 
on an 80° arc centered on the initial walking direction.

These initial positions were then jittered in polar coordinates, 
with the radial displacement Δr randomly selected from a 
Gaussian distribution (μ = 0 m and σ = 0.15 m) and the angular dis
placement Δθ from a separate Gaussian distribution (μ = 0° and 
σ = 8°). A different crowd configuration was generated for each tri
al; all participants received the same set of configurations, but vir
tual humans were randomly assigned to the positions.

During a trial, all virtual humans accelerated forward from a 
standstill (0 m/s) to a walking speed (1.0 m/s) over a period of 3 s 
following a sigmoidal function (cumulative normal, μ = 0 and σ =  
0.5 s) fit to previous human data. They walked on parallel linear 
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paths for 2 s, then the heading direction of a subset of the 12 
neighbors was perturbed by ±10°, all to the right or to the left, 
over a period of 0.5 s, following a similar sigmoidal function 
(μ = 0 and σ = 0.083 s). They continued walking on new linear paths 
for another 8 s. In the second experiment, crowd speed was in
creased to 1.15 m/s, closer to participants’ preferred walking 
speed, and the display thus continued for 5.4 s.

The crucial manipulations were the following. In the first ex
periment, the perturbed subset (0, 3, 6, 9, or all 12 neighbors) 
was randomly selected from near and far neighbors. (The speed 
of the subset was similarly perturbed by ±0.3 m/s in a separate 
condition; see Supplementary Data S1.) In the second experiment, 
only the nearest neighbors (0, 2, or 4) were perturbed. The four 
nearest neighbors always appeared at the same distances, and 
the density manipulation only affected the distances of the eight 
other neighbors.

Procedure
Participants were instructed to walk as naturally as possible, to 
treat the virtual pedestrians as if they were real people, and to 
stay together with the crowd. On each trial, the participant walked 
to the green start pole and faced the red orienting pole. After 2 s, 
the poles disappeared and the virtual crowd appeared; 1 s later, 
a verbal command (“begin”) was played and the virtual crowd be
gan walking. The display continued until the participant had 
walked about 12 m (a duration of 12 s in the first experiment 
and 10.4 s in the second); a verbal command (“end”) signaled the 
end of the trial. There were two practice trials to familiarize the 
participant with walking in the virtual environment. During this 
time, the participants could adjust the inter-ocular distance 
(IOD) of the head mounted display (HMD) so that the display 
was clearly visible.

Design
First experiment: 5 perturbed subsets (0, 3, 6, 9, and 12 neighbors) ×  
2 densities (high and low) × 2 perturbations (heading and speed). 
There were 8 trials per condition, for a total of 160 trials presented 
in a randomized order in two 1-h sessions. The 80 heading per
turbation trials are reported in the text, and the results from the 
80 speed perturbation trials appear in Fig. S1. Second experiment: 
3 perturbed subsets (0, 2, and 4 nearest neighbors) × 2 densities 
(high and low). There were 16 heading perturbation trials per con
dition, yielding a total of 96 trials presented in a randomized order 
in a 1-h session.

Data processing
For each trial, the time series of head position in the horizontal (X– 
Y ) plane were filtered using a forward and backward fourth-order 
low-pass Butterworth filter to reduce the effects of oscillations 
due to the step cycle and occasional tracker error. Time series of 
heading direction and walking speed were then computed from 
the filtered position data. A 0.6-Hz cutoff was used for computing 
heading to reduce lateral oscillations on each stride, while a 
1.0-Hz cutoff was used for computing speed to reduce anterior– 
posterior oscillations on each step. Right and left turn trials 
were collapsed by multiplying the heading angle on left turns by 
−1. Speed-up and slow-down trials were collapsed by first (i) nor
malizing walking speed by subtracting the walking speed of un
perturbed crowd (1 m/s) from participants’ speed time series 
and then (ii) multiplying the normalized speed on slow-down tri
als by −1, to yield the absolute change in speed. Final heading and 
final speed were then computed as the average value during the 

last 2 s of each trial (4 to 6 s postperturbation in the first experi
ment and 2.4 to 4.4 s in the second). To further mitigate the effect 
of gait oscillations, a mean time series was computed for each par
ticipant in each condition. Dependent measures included the 
mean final heading, and the mean time series of heading, for 
each participant in each condition (and the same for absolute 
speed change in the first experiment).

Statistical analysis
We took a LME regression approach, using the fitlme function 
(maximum likelihood approximation) in MATLAB (R2019b). The 
dependent variable (e.g. heading) is regressed on predictor varia
bles that may include categorical fixed effects (e.g. density), con
tinuous fixed effects (e.g. time), and random effects (e.g. 
subjects, with unique intercepts). The residuals were inspected 
for any obvious heteroscedasticity or deviations from normality. 
Main effects and interactions were tested by comparing models 
in a step-down procedure that removes tested terms from the 
full model, using likelihood ratio χ2 tests. Slopes are described 
for significant effects.

We performed two LME regression analyses: one on mean final 
heading and the second on the mean heading time series (see 
Fig. 3, Table S1 for Experiment 1, and Table S2 for Experiment 
2). Parallel analyses were performed on the speed data (see 
Fig. S1 and Table S1C).

Human swarm experiment
Participants
One group of 10 participants, one group of 16 participants, and one 
group of 20 participants were tested in separate sessions as part of 
a larger study. The protocol was approved and informed consent 
was obtained as before, and participants were paid for their time.

Equipment
Head position was recorded in a large hall with a 16-camera infra
red motion capture system (Qualisys Oqus, Buffalo Grove, IL) at 
60 Hz. The tracking area (14 m × 20 m) and starting boxes were 
marked on the floor with colored tape. Each participant wore a bi
cycle helmet with a unique constellation of five reflective markers 
on 30–40-cm stalks.

Procedure
Participants were instructed to walk about the tracking area at a 
normal speed, veering randomly left and right, while staying to
gether as a group, for 2-min trials. Participants began each trial 
in shuffled positions in one of the starting boxes, corresponding 
to high- and low-density conditions: a 2 × 2 m or 3 × 3 m box for 
the 10-person group, a 3 × 3 m or 4 × 4 m box for the 16-person 
group, and a 4 × 4 or 7 × 7 m box for the 20-person group. At a ver
bal “go” signal, they began walking for 2 min, until a “stop” signal. 
Each group received two trials in each density condition.

Design
There were three groups (N = 10, 16, and 20)  and  2 initial densities 
(high and low). There were two trials per condition, yielding a total 
of 12 trials with 24 min of raw data.

Data processing
The 3D position of the centroid of the markers on each helmet was 
reconstructed on each frame using a custom algorithm. Due to 
limits on the viewing volume and infrared reflections in the hall, 
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there were many tracking errors, such that 100% of the helmets 
were recovered in 45% of all frames. The time series of head pos
ition in the 2D horizontal (x,y) plane was processed and filtered as 
before, and the heading direction of each helmet was computed 
on each time step in which it was successfully tracked; speed 
did not vary appreciably and was not analyzed further.

We measured the density of the swarm in each frame as the 
number of participants per square meter (p/m2). Because this 
measurement depends on knowing the position of every partici
pant, only frames in which 100% of the helmets were recovered 
were used in this analysis. We first computed a 2D boundary 
around the (x,y) positions of the participants using MATLAB’s 
boundary function, with the “shrink” parameter set to the default 
value of 0.5; it ranges from 0 to 1, where 0 produces the convex 
hull and 1 a concave boundary that hugs the points tightly. We 
then computed the area of that polygon using the polyarea func
tion and finally calculated density by dividing the number of par
ticipants in that frame (p) by the area of the polygon (m2). This 
method is sufficient to capture the relative density in low and 
high conditions for each group (with constant N ). For a robust es
timate, we averaged the measured density of all frames in each 
10-s segment on each trial. The mean density of the trials in 
each time bin in the high and low conditions is plotted as a func
tion of time bin in Fig. S3; the error bars represent the SE of the trial 
means in each time bin, where each bin includes one to four 
samples.

Simulation methods
Individual trials from the virtual crowd experiments were simu
lated in MATLAB using the Runge–Kutta method (ode45 function). 
The participant’s position, heading, and speed 2 s before the per
turbation were taken as the initial conditions. For the metric mod
el (Eqs. 1a and 1c) and topological model (Eqs. 1a and 2) 
simulations of heading, the input on each time step was the dis
tance and heading of the virtual humans in the participant’s field 
of view and the recorded time series of the participant’s walking 
speed in that trial; the output was a time series of the agent’s 
heading. When simulating speed (Eqs. 1b and 1c, first experiment 
only), the input was the distance and speed of the virtual neigh
bors, and the output was a time series of the agent’s speed 
(Fig. S1). For the visual model (Eq. 3), the input was the angular vel
ocity, optical expansion rate, eccentricity, and visibility of each 
virtual human, which were calculated from their positions on 
each time step. The outputs were time series of the agent’s (x,y) 
position, heading, and speed.

Model comparisons
To compare the simulations with the human data, we first calcu
lated the mean time series of heading (or speed) for each partici
pant in each condition and for the corresponding model agent. 
We then computed the mean absolute error (MAE) between 
each model agent and the participant time series in each condi
tion. Finally, we compared the models to one another by calculat
ing Bayes factors (BFvm) based on the MAE between the model and 
each subject. Note that the variability in the final heading is very 
small for the models because gait oscillations and tracker error 
were not simulated, so we compare the model means with 95% 
CI for the human data in the figures.

Model performance benchmarks
The performance of any model is limited by the inherent noise in 
the human data due to gait oscillations and tracker error. To 

benchmark the lower bound on error, we estimated the fluctua
tions in heading when walking on a straight path by computing 
the RMSE between each participant’s mean time series of heading 
on control trials (0 neighbors perturbed) and a heading of 0°. 
Conversely, to benchmark the upper bound on error—the failure 
of a model to respond to a perturbation—we estimated the error 
for a model that does not respond to the input by computing the 
RMSE between each participant’s mean heading time series on 
perturbation trials and a heading of 0°. These benchmarks indicate 
the range of model performance, from the best possible perform
ance given the noise in the data to the performance of a model 
that does nothing. Of course, the performance of a model that re
sponds inappropriately would be even worse.
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