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It is commonly believed that global patterns of motion in flocks, schools and

crowds emerge from local interactions between individuals, through a process

of self-organization. The key to explaining such collective behaviour thus lies in

deciphering these local interactions. We take an experiment-driven approach

to modelling collective motion in human crowds. Previously, we observed

that a pedestrian aligns their velocity vector (speed and heading direction)

with that of a neighbour. Here we investigate the neighbourhood of interaction

in a crowd: which neighbours influence a pedestrian’s behaviour, how this

depends on neighbour position, and how the influences of multiple neighbours

are combined. In three experiments, a participant walked in a virtual crowd

whose speed and heading were manipulated. We find that neighbour influence

is linearly combined and decreases with distance, but not with lateral position

(eccentricity). We model the neighbourhood as (i) a circularly symmetric region

with (ii) a weighted average of neighbours, (iii) a uni-directional influence, and

(iv) weights that decay exponentially to zero by 5 m. The model reproduces the

experimental data and predicts individual trajectories in observational data on

a human ‘swarm’. The results yield the first bottom-up model of collective

crowd motion.
1. Background
Striking displays of collective motion are observed in avarietyof species, from flocks

of starlings and schools of herring to crowds of pedestrians in public spaces [1,2].

Under certain conditions, groups of individuals coordinate their speed and heading

(direction of travel) to yield patterns of coherent motion. A better understanding

of the dynamics of human crowds is of particular importance considering the

incidence of casualties in stampedes and emergency evacuations [3].

It is commonly believed that global patterns of collective behaviour emerge

from local interactions between individuals in a process of self-organization

[4–6]. The key to explaining collective motion thus lies in characterizing these

local interactions and how they give rise to global patterns. Numerous mathemat-

ical and computational models have been proposed within this local-to-global

framework [7]. These ‘microscopic’ models describe behavioural ‘rules’ that

govern an individual’s interactions with neighbours, as well as other entities

such as goals and obstacles. In particular, they assume that an individual is

influenced by multiple neighbours in a zone of influence, or neighbourhood of

interaction. Once local rules are formalized, agent-based simulations are used

to test whether the model reproduces characteristic patterns of collective

motion and, ideally, to predict behaviour in novel situations.

Such microscopic models have proliferated in recent years. Early models of

fish schooling led to the dominant attraction–repulsion approach [8,9]. This

class of models is predicated on three basic rules, (i) attraction: move toward neigh-

bours in a far zone, (ii) repulsion: move away from neighbours in a near zone, and

(iii) alignment: match the velocity (speed and heading) of neighbours in an inter-

mediate zone.1 Couzin et al. [10] showed that, by adjusting parameters for the

radii of alignment and attraction zones, such a model can generate qualitatively

distinct patterns, including unaligned aggregation (shoaling), strongly aligned

translational motion (schooling) and coherent rotational motion (mills).
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The self-propelled particle model [11] assumes only

a minimal alignment rule, in which each individual adopts

the mean heading direction of all neighbours within a zone

of fixed radius. This rule alone can generate coherent transla-

tional motion [12]. Conversely, the influential social force

model [13] eschews an alignment term, such that collective

motion emerges from position-based attraction and repulsion

forces. This, too, generates plausible global patterns, but local

trajectories tend to resemble particle motion more than

human locomotion [14].

Recently, ‘cognitive heuristic’ or ‘vision-based’ models

have been proposed [15,16], which employ simple rules

based on the distance or time-to-contact with objects to steer

toward the goal while avoiding collisions. Although we are

sympathetic with this approach, behavioural experiments are

necessary to justify the proposed heuristics.

There is thus a plethora of theoretical models of collective

motion. With recent advances in motion tracking of bird

flocks and human crowds, they are beginning to be compared

against empirical data [1,17–20]. However, successfully simu-

lating observational data is insufficient to confirm a model,

for different local rules can give rise to the same motion patterns

[2,21]. To decipher the local rules, experimental manipulation at

the level of individual behaviour is necessary [7,22].

We have been pursuing such an experiment-driven,

bottom-up approach, called behavioural dynamics [23,24], with

the aim of building a pedestrian model that can explain emer-

gent behaviour. Elementary locomotor behaviours are studied

individually and modelled with simple attractor/repeller

dynamics; these models are analogous to behavioural ‘rules’

but emphasize their dynamical rather than logical form.

Related experiments identify visual control laws, incorporating

the optical information that regulates each behaviour. The

resulting pedestrian model has five components: (i) steering

to a goal, (ii) obstacle avoidance, (iii) moving target intercep-

tion, (iv) moving obstacle avoidance, and (v) braking to

avoid collision, analogous to a local ‘repulsion’ rule [24–26].

Linearly combining these components successfully predicts

trajectories in more complex environments [24,27].

To understand the basis of collective motion, we recently

studied binary pedestrian following. We found that a pedestrian

p aligns with a neighbour n directly ahead (the leader) by accel-

erating to match the leader’s speed ð_rÞ and heading direction (f)

[28–30]. These results allowed us to specify a simple model of

the alignment dynamics for binary interactions:

€rp ¼ cð_rn � _rpÞ ð1:1Þ

and

€fp ¼ �ksinðfn � fpÞ, ð1:2Þ

where €r, €f are linear and angular acceleration, and c, k are gain

parameters that depend on the leader’s distance. To explain col-

lective motion, however, requires determining how a pedestrian

is influenced by multiple neighbours.

The present paper thus aims to characterize the neighbour-

hood of interaction underlying collective motion in human

crowds. In particular, we ask which neighbours visually influ-

ence a pedestrian’s behaviour (i.e. are visually coupled), how the

degree of influence (coupling strength) depends on neighbour

position, and how the influences of multiple neighbours

are combined.

We experimentally test three hypotheses about the

neighbourhood of interaction. (i) Superposition hypothesis.
Most models of collective motion assume that binary inter-

actions between a pedestrian and each neighbour are linearly

combined. That is, the response of a pedestrian in a crowd is

the combination of individual responses to each neighbour, a

property known as superposition. This hypothesis predicts

that as a greater number or percentage of neighbours change

direction or speed, the pedestrian’s response should increase

proportionally. (ii) Distance hypothesis. Many models assume

a constant coupling strength within an alignment zone with

‘hard’ boundaries [8–11]. However, Fajen & Warren [25]

found that attraction or repulsion strength decreases exponen-

tially with the distance of a goal or obstacle, leading us to

expect that the coupling strength for alignment will also

decay with distance. (iii) Eccentricity hypothesis. There are

numerous reports of an elliptical ‘personal space’ for walking

pedestrians [13,25,31]. This implies that, for a given distance,

coupling strength should decrease with a neighbour’s lateral

position or eccentricity, the horizontal angle from the current

heading direction.2 Neighbours directly ahead should exert

the greatest influence, while the influence of those to the left

and right should decrease symmetrically to the edges of the

field of view.

The results reveal that a pedestrian is strongly coupled to

neighbours within a local neighbourhood, that their influence

is linearly combined, consistent with the superposition hypo-

thesis, and that coupling strength decreases exponentially

with distance out to 4–5 m, consistent with the distance

hypothesis. In contrast, we find little evidence that coupling

strength depends on eccentricity within the field of view. The

results enable us to specify a model of the local neighbourhood

that reproduces the experimental data and predicts individual

trajectories in motion capture data on a human ‘swarm’. We

thus formulate the first bottom-up model of collective motion

in human crowds, providing a basis for realistic models of

crowd dynamics.
2. Experiments: walking with a virtual crowd
To probe the visual coupling between a pedestrian and their

neighbours experimentally, we created a novel paradigm in

which a human participant actively walks with a virtual

crowd. This allowed us to manipulate the behaviour of virtual

neighbours and measure their influence on the participant’s tra-

jectory. To determine the alignment response, we suddenly

changed (perturbed) the heading direction or walking speed

of a subset (S) of the virtual neighbours (N), and recorded the

participant’s adjustment in lateral position or walking speed.

Experiment 1 tested the superposition hypothesis by vary-

ing the number of neighbours in the perturbed subset;

Experiment 2 tested the distance hypothesis by selectively per-

turbing neighbours in a near zone and/or a far zone; and

Experiment 3 tested the eccentricity hypothesis by varying

the lateral position of the perturbed neighbours.
(a) Experimental methods
(i) Participants
Separate groups of 10 volunteers participated in Experiment

1 (5F, 5M), Experiment 2 (6F, 4M) and Experiment 3 (6F,

4M). Participants were recruited through announcements

posted on the Brown University campus. None reported

any visual or motor impairment.
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Figure 1. (a) Virtual crowd display from participant’s view, and (b) an aerial view. (c) Diagram of a heading perturbation with S ¼ 3 (from Experiment 2).
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(ii) Apparatus
The experiments were conducted in the Virtual Environment

Navigation Laboratory (VENLab) at Brown University.

Participants walked in a 12 � 14 m tracking area while wear-

ing a stereoscopic head-mounted display (HMD, Oculus

Rift DK1, 640 � 800 pixels per eye, 908H � 658V field of

view, 60 Hz frame rate). Head position and orientation

were recorded with an ultrasonic/inertial tracking system

(Intersense IS-900, 60 Hz sampling rate) and used to update

the display (50–67 ms latency).
(iii) Displays
The virtual environment consisted of a granite-textured ground

plane with a green start pole and a red orienting pole (3 m high,

0.2 m radius, 12.7 m apart) and blue sky. The virtual crowd was

generated using 3D human models (WorldViz Complete

Characters) (figure 1a), animated with a walking gait at a ran-

domly varied phase. Thirty virtual humans were positioned

on two circles (radius 1.5 m, 3.5 m) with the participant at the

centre (figure 1b) to enhance the sense of immersion. Twelve

of them (N ¼ 12) were experimentally manipulated, and

appeared on two 908 arcs centred on the initial walking direc-

tion, within the typical field of view. Five of these neighbours

were placed at equal intervals on the 1.5 m radius arc (near

zone), and seven on the 3.5 m radius arc (far zone); their pos-

itions were then subjected to Gaussian jitter in polar

coordinates (distance Dr: s.d. ¼ 0.15 m; eccentricity Du: s.d. ¼

88). The remaining 18 were also placed at equal intervals and

similarly jittered. A different configuration was generated for

each trial; all participants received the same set of configurations,

but virtual humans were randomly assigned to the positions.

During a trial, all virtual humans accelerated from a stand-

still (0 m s21) to a speed of 1.3 m s21 over a period of 3 s in the

participant’s walking direction, following an ogive function

(m ¼ 0, s ¼ 0.5 s) fit to previous data. On perturbation trials,

after 2 s a subset (S) of the 12 neighbours then changed their

heading direction (+108 left or right) or speed (+0.3 m s21)

over a period of 0.5 s, following another ogive function (m¼ 0,

s¼ 0.083 s).
(iv) Procedure
Participants were instructed to walk as naturally as possible,

to treat the virtual pedestrians as if they were real people, and

to stay together with the crowd. On each trial, the partici-

pant walked to the start pole and faced the orienting pole.
After 2 s, the poles disappeared and the virtual crowd

appeared; 1 s later, a verbal command (Begin) was played

and the virtual crowd began walking. The display continued

until the participant had walked about 12 m; a verbal com-

mand (‘End’) signalled the end of the trial. In each

experiment, there were eight heading trials and eight speed

trials per condition, presented in a randomized order, with

80 trials in each 1-hour session.

(v) Data processing
For each trial, the time series of head position in the horizontal

X–Y plane were filtered using a forward and backward fourth-

order low-pass Butterworth filter to reduce occasional tracker

error and oscillations due to the step cycle. Time series of walk-

ing speed, heading direction, and their rates of change, were

then computed from the filtered position data. A 1.0 Hz cut-

off was used for computing speed to reduce anterior–posterior

oscillations on each step [30], while a 0.6 Hz cut-off was used

for computing heading to reduce lateral oscillations on each

stride [25]. To eliminate ‘endpoint error’, the time series were

extended by 2 s using linear extrapolation based on the last

0.5 s of data for filtering only [32].

Dependent measures were the participant’s change in

heading or walking speed in response to a perturbation.

Change in heading was measured by computing the lateral

deviation, subtracting the participant’s final lateral position

on a perturbation trial (1 s before the end of the trial) from

their mean final lateral position on all control trials. Right

and left turn trials were then collapsed by multiplying the lat-

eral deviation on left turns by 21. Change in speed was

computed by subtracting the participant’s mean final speed

on a perturbation trial (1.5 to 0.5 s before the end of the trial)

from their mean final speed on all control trials in the corre-

sponding distance condition. Slow and fast trials were

collapsed by multiplying the final speed on slow trials by

21. However, we noted a small asymmetry, with a greater

speed change in response to neighbours decelerating

(for Exp. 2, S ¼ 12, M ¼ 0.31 m s21, s.d. ¼ 0.09) than accelerat-

ing (M ¼ 0.20 m s21, s.d. ¼ 0.13; t19 ¼ 3.11, p , 0.01) from

the same initial distance; Rio et al. [30] attributed this to

Euclid’s law of perspective, which produces a higher rate of

optical expansion than contraction. The collapsed data were

analysed in R statistical software using one-way repeated

measures (RM) ANOVA in Exp. 1 (main effect of number of

perturbed neighbours) and two-way RM ANOVA in Exp. 2

(main effects of number and distance of perturbed neighbours)
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Figure 2. Results of Experiment 1: (a) heading perturbations. Mean absolute lateral deviation as a function of the number of neighbours in the perturbed subset
S. Results of Experiment 2: (b) heading perturbations. Mean absolute lateral deviation as a function of the number and distance of perturbed neighbours. (c) Speed
perturbations. Mean absolute change in speed as a function of same. Error bars ¼ s.e. of mean. (Online version in colour.)
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and Exp. 3 (main effects of eccentricity and distance of per-

turbed neighbours), with generalized eta squared (h2
G) as a

measure of effect size.

(b) Experiment 1: number of perturbed neighbours
Experiment 1 tested the superposition hypothesis by manip-

ulating the number of neighbours in the perturbed subset

(S ¼ 0,3,6,9,12); their positions in the crowd were varied ran-

domly on each trial. Superposition predicts that, as the

number (or proportion) of perturbed neighbours increases,

the participant’s response should increase linearly. There

were thus five subset conditions and a total of 80 trials.

(i) Results
There was a significant effect of the number of perturbed neigh-

bours on the participants’ lateral deviation, (F4,36¼ 95.33, p ,

0.001,h2
G ¼ 0:86), consistent with a linear combination of neigh-

bour influences (figure 2a). Similarly, there was a significant

effect of number of perturbed neighbours on the participants’

change in speed (F4,36¼ 22.17, p , 0.001, h2
G ¼ 0:66) (see elec-

tronic supplementary material, figure S1). Indeed, the mean

response increased linearly with the size of the perturbed

subset for both heading and speed (r ¼ 0.99).

The results of Experiment 1 demonstrate that velocity align-

ment is consistent with the superposition hypothesis. That is,

the participant’s heading and speed response is a linear combi-

nation of responses to each neighbour. Given that the total

number of neighbours was constant (N ¼ 12), the response

could depend on either the absolute number or the proportion

of neighbours perturbed; subsequent research (in preparation)

suggests the latter.

(c) Experiment 2: distance of perturbed neighbours
Experiment 2 tested the distance hypothesis by perturbing

neighbours in the near zone and/or the far zone (figure 1c).

The distance hypothesis predicts that perturbing neighbours

in the near zone should elicit a greater response from the

participant than perturbing those in the far zone. The design

of Experiment 2 was thus 2 distances (approx. 1.5 m and

3.5 m) � 5 subsets (S ¼ 0,3,6,9,12), yielding 10 conditions and

a total of 160 trials.

(i) Results
We found a significant effect of the distance of perturbed neigh-

bours on the participants’ lateral deviation (F1,9 ¼ 71.57, p ,
0.001,h2
G ¼ 0:49), consistent with the hypothesis that neighbour

influence decreases with distance (figure 2b). Once again, there

was a significant effect of subset size on lateral deviation (F4,36¼

244.66, p , 0.001, h2
G ¼ 0:89), consistent with superposition.

Because there were only five neighbours in the near zone

and seven in the far zone, larger subsets actually perturbed

neighbours in both zones. Thus, for a stronger test of the dis-

tance hypothesis, we performed a sub-analysis of the smaller

subsets alone (S ¼ 0,3,6, left side of figure 2b). The results

confirmed a significantly greater response to perturbed

neighbours in the near zone than the far zone (F1,9 ¼ 69.99,

p , 0.001, h2
G ¼ 0:68), as well as a significant effect of subset

size (F2,18¼ 90.93, p , 0.001, h2
G ¼ 0:70), and a significant

interaction (F2,18¼ 45.58, p , 0.001, h2
G ¼ 0:58).

Similarly, we found a significant effect of neighbour dis-

tance on the participants’ change in speed (F1,9 ¼ 22.93, p ,

0.001, h2
G ¼ 0:25), as well as a significant effect of subset size

(F4,36¼ 34.28, p , 0.001, h2
G ¼ 0:72) (figure 2c). A sub-analysis

of the smaller subsets (S ¼ 0,3,6) confirmed a significantly

greater response to neighbours in the near zone than the far

zone (F1,9 ¼ 60.15, p , 0.001, h2
G ¼ 0:54), a significant effect

of subset size (F2,18¼ 50.67, p , 0.001, h2
G ¼ 0:64), and a

significant interaction (F2,18¼ 2.70, p , 0.001, h2
G ¼ 0:33).

The results of Experiment 2 demonstrate that coupling

strength decreases with neighbour distance for both heading

and speed, consistent with the distance hypothesis. Visually,

this decrease might be attributed to lower angular velocities

due to the laws of perspective, to greater occlusion of far

neighbours, or both—a question we are currently pursuing.

In sum, the local neighbourhood can be characterized by

the superposition of binary interactions, with a coupling

strength that decreases with distance.

(d) Experiment 3: eccentricity of perturbed neighbours
In Experiment 3, we tested the eccentricity hypothesis by selec-

tively perturbing neighbours in 308 horizontal sectors of the

display. There were five overlapping sectors (centred on 2308,
2158, 08,þ158, andþ308, left to right). The eccentricity hypoth-

esis predicts that neighbours in the central sector (08) should elicit

the greatest response, while responses to neighbours in more per-

ipheral sectors (+158, +308) should progressively decrease. We

also repeated the distance manipulation by perturbing neigh-

bours in the near zone (M ¼ 1.23 neighbours, s.d. ¼ 0.73) or

the far zone (M ¼ 2.18 neighbours, s.d.¼ 0.81) of a given

sector. Given that only one to two neighbours were perturbed

on average, responses were expected to be smaller. The design



(a) 0.3 0.10

0.05

–0.05

0

0.2

0.1

0

–0.1
–30 –15 0

eccentricity (°)

m
ea

n 
la

te
ra

l d
ev

ia
tio

n 
(m

)

m
ea

n 
ch

an
ge

 in
 s

pe
ed

 (
m

 s
–1

)

15 30

–30 –15 0

eccentricity (°)

15 30

near

far

(b)

Figure 3. Results of Experiment 3: (a) heading perturbations. Mean absolute lateral deviation as a function of the eccentricity and distance of perturbed neighbours.
(b) Speed perturbations. Mean absolute change in speed as a function of same. Error bars ¼ s.e. of mean. (Online version in colour.)

rspb.royalsocietypublishing.org
Proc.R.Soc.B

285:20180611

5

 on May 16, 2018http://rspb.royalsocietypublishing.org/Downloaded from 
was thus 5 eccentricity � 2 distance conditions, plus a no-

perturbation control, yielding 11 conditions and a total of 176

trials.

(i) Results
There was no overall effect of eccentricity on the participants’

mean lateral deviation (F4,36 ¼ 1.94, p . 0.05, h2
G ¼ 0:04;

figure 3a). We again observed a significant effect of neighbour

distance (F1,9 ¼ 20.19, p , 0.01, h2
G ¼ 0:14), but there was also

a significant interaction (F4,36 ¼ 3.65, p , 0.05, h2
G ¼ 0:14).

A simple effects analysis revealed a significant eccentricity

effect in the Far condition (F4,36 ¼ 3.63, p , 0.05, h2
G ¼ 0:25),

but not in the Near condition (F4,36 ¼ 1.22, p . 0.05,

h2
G ¼ 0:08). Moreover, the distance effect was only significant

at eccentricities of 2308 and þ308 ( p , 0.01).

Similarly, we found no overall effect of eccentricity on

the participants’ change in speed (F4,36¼ 0.86, p . 0.05,

h2
G ¼ 0:04; figure 3b). There was again a significant effect of

distance (F1,9 ¼ 14.15, p , 0.01, h2
G ¼ 0:10), but no interaction

(F4,36 ¼ 0.95, p . 0.05, h2
G ¼ 0:00); responses were greater to

near neighbours than far neighbours at all eccentricities.

Simple effects tests did not reveal an eccentricity effect in

either the near or the far zone (both p . 0.05, h2
G ¼ 0:04).

The results do not provide convincing evidence for the eccen-

tricity hypothesis. The only consistent effect occurs with heading

perturbations of far neighbours at larger eccentricities (red curve

in figure 3a). We suggest this effect may be due to the laws of per-

spective, similar to one we observed in binary following [33]. If a

neighbour straight ahead (08 eccentricity) turns 108 left or right,

they drift laterally in the field of view with a given angular

velocity; a neighbour at a 308 eccentricity would have a smaller

mean angular velocity, which would decrease even further

with distance. The reduced response in the Far condition may

thus be attributable to reduced optical motion. In contrast,

speed perturbations produce optical expansion/contraction

that appears to be similar over this range of eccentricities,

although it too decreases with distance (figure 3b). These visual

effects might explain the pattern of results in Experiment 3.

Taken together, the experimental findings are consistent

with the superposition of multiple neighbours, with a coup-

ling strength that decreases with distance but not eccentricity.
3. Observational data on a human ‘swarm’
To compare these experimental results with observations of

crowd behaviour, we collected motion capture data on
collective motion in a human ‘swarm’ scenario. We recorded

three groups of participants walking together for periods of

2 min. To investigate the distance and eccentricity hypotheses,

we computed pairwise statistics between a central participant

and each neighbour as a function of their relative spatial

positions.

(a) Methods
(i) Participants
One group of 16 participants (6F, 10M) and two groups of

20 participants (10F, 10M) were tested in separate sessions

as part of a larger study.

(ii) Apparatus
The groups were tested in a large hall with a 14 � 20 m track-

ing area marked on the floor with red tape. Each participant

wore a bicycle helmet with a unique constellation of five

reflective markers on 30–40 cm stalks. Head position was

recorded at 60 Hz with a 16-camera infrared motion capture

system (Qualisys Oqus).

(iii) Procedure
Participants were instructed to walk about the tracking area at a

normal speed, veering randomly left and right, while staying

together as a group. They began each trial in random positions

in a 7 � 7 m start box marked on the floor (approx. 2 m inter-

personal distance (IPD)) or a 4 � 4 m start box (approx. 1 m

IPD). At a verbal ‘go’ signal, they started walking for 2 min,

until a ‘stop’ signal.

(iv) Data processing
We analysed three 2 m IPD trials in detail, a total of 6 min of

data. 3D head positions were successfully recovered on 88%

of frames, and the time series for each participant was pro-

cessed as before. Walking speed did not vary appreciably,

and was not analysed further. To measure local coordination,

we computed the absolute value of the difference in heading

direction between the ‘central participant’ nearest the centre

of the swarm and each neighbour on each frame, thereby

minimizing edge effects [34]. To estimate response times,

windowed cross-correlations (1 s travelling window) and opti-

mal delays between the central participant and each neighbour

were also computed. These measurements were averaged

across all frames and plotted in heat maps with the central

participant at the origin (0,0) heading upward; each cell thus
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represents the mean statistic for all participants occupying that

relative spatial location in 6 min of data.
(b) Results
A heat map of mean absolute heading difference appears in

figure 4a. It is immediately apparent that the neighbourhood

is circularly symmetric, not elliptical. The mean heading differ-

ence is quite small, 15–258, within a 2 m radius, but increases to

30–408 at a radius of 3–4 m. There is thus close coordination

with near neighbours that decreases with distance.

To estimate the decay in coupling strength with distance,

we computed the mean heading difference at each radius in

the heat map, scaled it (range 0 to 1) and subtracted it from

1, and plotted the result as a function of radial distance

(figure 4c). The coupling strength wi to each neighbour

decays exponentially with distance, closely fit by the equation

wi ¼
a

evdi þ a
, ð3:1Þ

where di is the distance of neighbour i, v ¼ 1.3 is the decay

rate, and a ¼ 9.2 is a constant (r2 ¼ 0.98).

Given that the human field of view is about 1808, however, a

pedestrian is visually coupled only to neighbours in front of

them. This uni-directional coupling is apparent from the heat

map of mean time delay for the same 6 min of data

(figure 4b). Time delays in the upper half of the map are posi-

tive, indicating that the neighbours ahead turned before the

central participant, whereas those in the lower half are negative,
indicating that the central participant turned before the

neighbours behind. Mean time delays are about 1 s within a

1.5–2 m radius, increasing to 1–3 s at 3–4 m. For binary follow-

ing, Dachner & Warren [28] reported mean delays of 0.98 s to a

neighbour who turns 2 m ahead, and 1.33 s to a neighbour 4 m

ahead. This suggests that the central participant’s response to

some (possibly occluded) far neighbours may be mediated by

an intervening neighbour, yielding a chain of response times.
4. Modelling the neighbourhood of interaction
The present findings enable us to formulate a model of the

local neighbourhood of interaction (figure 5a). Specifically,

given superposition, we propose that a pedestrian’s linear

(or angular) acceleration is a weighted average of the differ-

ence between their current speed (heading) and that of each

neighbour. By substituting the alignment dynamics

(equations (1.1) and (1.2)) into this neighbourhood model,

we can derive the local interactions that generate collective

motion,

€rp ¼
c
n

Xn

i¼1

wið_ri � _rpÞ ð4:1Þ

and

€fp ¼ �
k
n

Xn

i¼1

wisin(fi � fpÞ, ð4:2Þ
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where n denotes the number of neighbours in the pedestrian’s

neighbourhood (within a 5 m radius, +908 from current head-

ing). The weight wi has a value of 1 at 0 m and decays

exponentially with the neighbour’s radial distance, in accord-

ance with equation (3.1). To estimate the gain parameters c, k
at a theoretical distance of 0 m, we fit our previous data on

binary following separately for distances of 1, 2, and 4 m, and

linearly extrapolated to 0 m, obtaining c ¼ 3.61 and k ¼ 3.15.

To test this ‘soft radius’ model, we first determined how

closely it reproduces the data from Experiments 1 and 2,

and then how well it predicts individual trajectories in the

more variable human swarm, with fixed parameters.

(a) Simulation methods
Each trial from Experiments 1 and 2 was simulated by taking

the virtual neighbours’ distance and speed (or heading) as

input at each time step, and computing a time series of the

model’s speed (heading) in accordance with equation (4.1)

(equation (4.2)). To reduce the effects of gait oscillations

and tracker error on individual trials, a mean time series

was computed for each participant in each condition and

compared with the mean model time series in the corre-

sponding condition, using the correlation coefficient

(Pearson’s r) and the root of the mean squared error (RMSE).

The same model was used to simulate individual trajec-

tories in the human swarm data. First, we identified 10 s

segments in which a participant had �7 neighbours in their

neighbourhood who were continuously tracked at speeds

�0.2 m s21; this yielded 14 segments of 2 m IPD data and 17

segments of 1 m IPD data. At the start of each segment, the

model was initialized with the participant’s position, speed

and heading. The distance, speed, and heading of every neigh-

bour was treated as input, and the model computed the

participant’s speed, heading, and change in position on each

time step. We computed the correlation and RMSE between

the individual model and human time series, and the mean

position error (distance between model and human), over the

10 s segment.

(b) Results
The correlations between the model and human in Experiment 1

were strong, with means of r¼ 0.88 (RMSE¼ 0.05 m s21) for

speed and r¼ 0.81 (RMSE¼ 1.948) for heading in the pertur-

bation conditions. In Experiment 2, the mean correlations were

even higher, with r¼ 0.90 (RMSE¼ 0.06 m s21) for speed and
r¼ 0.88 (RMSE¼ 2.068) for heading. The model thus closely

reproduces the temporal evolution of a pedestrian’s response

to their neighbours (electronic supplementary material, figures

S2 and S3). Moreover, model predictions of the final stabilized

heading and speed (mean of last 2 s in time series) were virtually

identical to the mean human data, as shown in figure 5b,c for

Experiment 2. The predicted value is contained within the 95%

confidence interval for the human data, indicating that the

data do not differ significantly from the model.

The model also predicts individual trajectories in the

human swarm. A sample trajectory from a 10 s segment

of swarm data appears in figure 6 (also electronic supplemen-

tary material, figure S4). For the 2 m IPD, the mean correlations

between model and human time series were r ¼ 0.90 (RMSE ¼

31.168) for heading, and r ¼ 0.65 (RMSE ¼ 0.19 m s21) for

speed.3 Position error accumulated from a mean of 0.27 m

during the first 3 s to a mean of 0.93 m for the 10 s segments.

The model also generalized to the 1 m IPD, with mean corre-

lations of r ¼ 0.93 (RMSE ¼ 27.568) for heading and r ¼ 0.60

(RMSE ¼ 0.16 m s21) for speed; mean position error increased

from 0.21 m during the first 3 s to 0.70 m over 10 s.

In sum, the neighbourhood model accounts for the coordi-

nation of heading and speed between individuals in a crowd,

and consequently the emergence of collective motion.
5. Discussion
The experimental results demonstrate that a pedestrian’s inter-

actions with multiple neighbours are linearly combined, in

accordance with superposition. At the same time, neighbour

influence decreases with distance, going to zero by 5 m. On

the other hand, influence does not appear to depend on eccen-

tricity within the field of view. In contrast to prey species with

nearly panoramic vision, yielding bi-directionally coupled

flocks and schools, humans typically have a 1808 field of

view and are uni-directionally coupled to neighbours ahead.

This has implications for the causal network in human crowds.

These findings led us to model the local neighbourhood

as a weighted average of neighbours (equations (4.1) and

(4.2)), in which the weights decrease exponentially with

radial distance (equation (3.1)). Together with our previous

results on alignment dynamics (equations (1.1) and (1.2)),

this enabled us to simulate the local interactions underlying

collective crowd motion. The model not only reproduces

participant responses in a virtual crowd, but generalizes to
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individual trajectories in a human swarm. Despite the fact

that swarm motion was more variable and some neighbour

data were missing, leading to an accumulation of position

error, the heading correlation was highly robust.

The model neighbourhood decays exponentially with

radial distance, creating a ‘soft’ radius. This neighbourhood

structure contrasts with previous theoretical models that pre-

sume an alignment zone with a constant coupling strength

and a hard radius. Our empirical model agrees with the

theoretical equation of Cucker & Smale [35], who showed

that a weighted-average model with a sufficiently gradual

decay converges to collective motion.

A number of further questions remain. First, the present

data do not resolve the issue of whether the neighbourhood

is defined by metric distance (e.g. metres), or topological dis-

tance (number of neighbours) as suggested by some analyses

of bird flocks ([17]; but see [36]). Second, although an ‘attrac-

tion’ rule appears to play a role in flocking [18,19], an

analogue for moving crowds has not yet been investigated.

Finally, at present, physical distance is a proxy for visual

information that depends on perspective or occlusion; we

are currently incorporating optical variables into the model.

We plan to address these questions in future reports.
6. Conclusion
We conclude that the local neighbourhood of interaction in

human crowds is circularly symmetric, with a uni-directional

coupling to multiple neighbours within +908 of the current

heading. Their influences are superposed as a weighted aver-

age, where the weight decays exponentially with distance.

Combining this ‘soft’ neighbourhood with the alignment

dynamics yields the first experiment-driven, bottom-up

model of collective motion in human crowds. This behaviour-

al dynamics model accounts for individual trajectories in
virtual and real crowds, and generates collective motion, con-

sistent with principles of self-organization. It is thus possible

to experimentally decipher the local interactions that underlie

collective crowd behaviour.
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Endnotes
1‘Alignment’ is often used to refer to the orientation of the body’s
longitudinal axis, which typically corresponds with the velocity
vector.
2We assume the body midline and field of view are typically aligned
with the heading direction (see figure 4b).
3These values reflect comparisons between individual time series,
rather than mean time series, yielding larger RMSEs due to gait oscil-
lations and tracker error. Speed correlations are lower because there
was little variation in speed in the swarm.
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