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When people walk together in groups or crowds they
must coordinate their walking speed and direction with
their neighbors. This paper investigates how a
pedestrian visually controls speed when following a
leader on a straight path (one-dimensional following). To
model the behavioral dynamics of following, participants
in Experiment 1 walked behind a confederate who
randomly increased or decreased his walking speed. The
data were used to test six models of speed control that
used the leader’s speed, distance, or combinations of
both to regulate the follower’s acceleration. To test the
optical information used to control speed, participants in
Experiment 2 walked behind a virtual moving pole,
whose visual angle and binocular disparity were
independently manipulated. The results indicate the
followers match the speed of the leader, and do so using
a visual control law that primarily nulls the leader’s
optical expansion (change in visual angle), with little
influence of change in disparity. This finding has direct
applications to understanding the coordination among
neighbors in human crowds.

Introduction

Collective locomotion is observed throughout the
animal kingdom in the form of flocks, herds, and
schools. Similarly, humans often walk together in small
groups and large crowds. These natural systems exhibit
orderly and coherent patterns of motion that are
believed to be self-organized (Couzin & Krause, 2003;
Helbing, Molnár, Farkas, & Bolay, 2001; Vicsek &
Zafeiris, 2012). On this account, global patterns of
behavior emerge from the dynamics of local interac-
tions between individuals. The principle challenge is to

determine how individuals interact locally with their
neighbors and the environment in order to guide
behavior.

While many theoretical models of such local
interactions have been proposed (Czirók & Vicsek,
2000; Helbing & Molnár, 1995; Reynolds, 1987), they
are often only weakly constrained by behavioral
evidence (Sumpter, Mann, & Perna, 2012). In some
cases, observational or experimental data have been
used to fit the parameters of a candidate model (Huth
& Wissel, 1994; Johansson, Helbing, & Shukla, 2007;
Lemercier et al., 2012; Moussaı̈d et al., 2009) or to test
competing models (Fajen & Warren, 2007; Ondřej,
Pettré, Olivier, & Donikian, 2010). Recently, there have
been calls for developing pedestrian models that are not
only empirically grounded, but also cognitively plausi-
ble, in that they incorporate the perceptual abilities of
individuals (Goldstone & Gureckis, 2009; Moussaı̈d,
Helbing, & Theraulaz, 2011; Ondřej et al., 2010;
Warren & Fajen, 2004).

The steering dynamics model proposed by Fajen and
Warren (2003, 2007; Warren & Fajen, 2008) is an
empirically grounded, visually based model of human
locomotor behavior. Based on a series of experiments
on human walking in virtual reality, it consists of a set
of ordinary differential equations that define attractors
and repellers in the direction of locomotion (heading),
and successfully describe how an individual steers to
stationary goals, avoids stationary obstacles, intercepts
moving targets, and avoids moving obstacles. These
four components were intended as building blocks of a
full pedestrian model that would characterize locomo-
tion in complex settings and crowds. In a preliminary
study, Bonneaud, Rio, Chevaillier, and Warren (2012)
analyzed the trajectories of four pedestrians walking to
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a common goal, and, not surprisingly, found that they
could not be reproduced by these four components
alone. This finding justifies the pursuit of additional
components to capture the complexity of collective
behavior in human crowds.

A likely candidate is a velocity coupling, whereby
individuals coordinate their speed and align their
heading direction with their neighbors. Theoretical
studies suggest these components may be fundamental
in producing collective patterns of motion, for self-
propelled particles that align their directions and travel
at the same speed can form stable swarms in the
absence of other forces (Vicsek, Czirók, Ben-Jacob,
Cohen, & Shochet, 1995). The simplest case of speed
and direction coordination, which is quite common in
everyday locomotion, is following another pedestrian.
In this article we investigate speed control for following
in dyads, as a bridge to modeling the local coupling
between neighbors in a crowd.

Following has been studied extensively in the context
of vehicular traffic since the 1950s (for a review, see
Brackstone & McDonald, 1999), including work on the
optical information used by drivers (Anderson & Sauer,
2007; Lee & Jones, 1967; Van Winsum, 1999). While
there are differences between pedestrian and vehicular
locomotion (namely, greater speeds and a greater range
of speeds in motor vehicles), this rich literature can be
brought to bear on investigations of pedestrian
following. Many of the models described in the next
section and tested in the present experiments were
directly inspired by research on car-following. Recent-
ly, pedestrian following has been studied in participants
walking the perimeter of a circular arena (Jelić, Appert-
Rolland, Lemercier, & Pettré, 2012; Lemercier et al.,
2012). Here, our goal is to understand both the
behavioral dynamics and visual control of one-dimen-
sional following, when the leader and follower walk on
a straight path, with the aim of deriving a speed control
law that may generalize to pedestrian groups.

Speed control in following

A complete characterization of locomotor behavior
includes two aspects: the behavioral dynamics, a
physical description of the observed behavior in terms
of physical variables (i.e., what agents are doing), and
the control laws that characterize how the behavior is
regulated by perceptual information (i.e., how agents
do it). This dual modeling approach has two advan-
tages. First, modeling the behavioral dynamics simpli-
fies the problem of identifying a control law, because a
physical description of the behavior constrains the
possible optical variables that might govern it. Second,
the physical description is more general, because the

same behavior may be governed by different informa-
tion in different contexts. Here we introduce several
candidate behavioral models of following and several
hypotheses about the information used for visual
control.

Behavioral dynamics

The aim of behavioral dynamics is to formally model
the behavior of the agent–environment system in terms
of physical variables and how they change over time,
which can be thought of as a behavioral strategy for a
given task. There are a number of hypothetical
strategies that could, in principle, be used to coordinate
speed in following.

Speed

One simple strategy that has been proposed in car-
following is for the follower to match the speed of the
leader (Lee & Jones, 1967). The follower should
accelerate if they are traveling slower than the leader
and decelerate if they are traveling faster than the
leader. Formally, the follower’s acceleration is given
by:

€xf ¼ c � _xl � _xf
� �

ð1Þ
where _xl is the leader’s speed, _xf is the follower’s speed,
and c is a free parameter. This can be equivalently
stated in terms of the relative speed D _x, which is the
difference in speed between the leader and follower, or
the speed of the leader in the follower’s reference frame:

€xf ¼ c � D _x½ � ð2Þ
Thus, acceleration goes to zero as the follower’s speed
approaches the leader’s speed; that is, as the relative
speed between them goes to zero. One advantage of this
speed-matching strategy is that it does not assume a
fixed distance between leader and follower; this is an
advantage both for the follower (who does not need to
store a reference value) and for the model (which does
not require an additional parameter).

Distance

Another simple strategy is for the follower to
maintain a fixed distance behind the leader, as proposed
for car-following by Kometani and Sasaki (1958).
When the distance between leader and follower is above
a reference value, the follower should accelerate; when
it is below that value, the follower should decelerate.
Formally, the follower’s acceleration €xf at each time
step is given by:

€xf ¼ c � Dx� Dx0½ � ð3Þ
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where Dx is the current distance (difference in position)
between the leader and follower, Dx0 is the fixed
reference distance, and c is a free parameter. Thus, the
follower’s acceleration goes to zero as the current
distance approaches the reference distance. From a
modeling perspective, the reference distance might be
chosen in several ways: it can be derived from
observational data, such as the initial distance between
leader and follower (we refer to this as the initial
distance model), or it can be a free parameter that
represents the ‘‘preferred’’ distance (the free parameter
distance model).

Velocity-based distance

A related strategy involves maintaining a distance
that depends on the current velocity, rather than the
constant distance described above. This strategy was
proposed in the car-following literature by Pipes (1953)
and Herman, Montroll, Potts, and Rothery (1959), and
is the basis for the ‘‘one-car length for every 10 mph’’
rule of thumb taught in driving schools. It can be
formalized by the expression:

€xf ¼ c � Dx� a� b _xf
� �

ð4Þ
where _xf is the follower’s speed, Dx is the current
distance between leader and follower, and a, b, and c
are free parameters. Acceleration goes to zero as the
distance between leader and follower approaches the
desired velocity-based distance determined by a and b.

Time-to-contact

The notion of ‘‘time to contact’’ (or ‘‘time to
collision’’) has proven fruitful in research on the visual
control of braking (e.g., Lee, 1976). Time to contact,
TC, provides an estimate of the time before one collides
with an object (or vice versa), given the distance to the
object and one’s speed, assuming a constant velocity.
For following, it provides an estimate of the time
before a follower collides with a leader, given the
distance between them, Dx, and their relative speed, D _x:

TC ¼
Dx
D _x

ð5Þ

A negative value of TC specifies that the follower will
collide with the leader at some time in the future, and
thus is gaining ground; a positive value implies that the
leader is getting away from the follower and, if both
maintain their current speeds, the two will not collide.
Thus, followers might maintain a value of TC that is
neither positive nor negative, to avoid either colliding
with the leader or letting him get away. If Dx is zero
then TC will be zero, but that means a collision has
occurred. Alternatively, if D _x is zero then TC will be
undefined, but this applies regardless of the value of Dx

and is thus a reformulation of the speed-matching
strategy, which aims to bring D _x to zero (Equation 2).
Therefore, a time to contact strategy will not be
considered further, but the next strategy is based upon
its inverse, the ‘‘immanence’’ of collision.

Ratio

The Gazis-Herman-Rothery (GHR) model (Gazis,
Herman, & Rothery, 1961) is ‘‘perhaps the most well-
known model’’ of car-following, according to Brack-
stone and McDonald (1999), Such a model was used by
Lemercier et al. (2012) in their study of pedestrians
walking the perimeter of a circular arena. We tested a
simplified version, based on the inverse of time-to-
contact, that we call the ratio model:

€xfðtÞ ¼ c � _xMf �
D _x

DxL
ð6Þ

where _xf is the follower’s speed, D _x and Dx are the
relative speed and distance, respectively, between leader
and follower, and c, M, and L are free parameters. Like
the speed-matching strategy, acceleration will go to
zero as the relative speed between leader and follower
goes to zero, but it is modulated by both the follower’s
current speed and the relative distance between leader
and follower.

Linear

A linear combination of the speed and distance
models was proposed for car-following by Helly (1959).
Again we use a simplified version, which we call the
linear model, given by:

€xfðtÞ ¼ c1 D _x½ � þ c2 Dx� a� b _xf
� �

ð7Þ
where D _x and Dx are the relative speed and distance,
respectively, between leader and follower, _xf is the
follower’s speed, and c1, c2, a, b, and c are free
parameters. In general, acceleration goes to zero when
the relative speed is zero (i.e., speed is matched), and the
difference between the current distance and the
velocity-based reference distance is zero (i.e., distance is
maintained).

Experiment 1 was designed to test these six
dynamical models of following behavior.

Optical information

The behavioral models described above are written
in terms of physical variables, like speed and distance.
Of course, observers do not have direct access to these
variables, but are coupled to the physical environment
by optical information. Followers could potentially use
a number of sources of information about the leader’s
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distance, including motion parallax and declination
angle; here we focus on visual angle and binocular
disparity (Gray & Regan, 1997; Heuer, 1993; Regan &
Beverley, 1979; Rushton & Wann, 1999), because they
permit direct online control, without an intermediate
computation of distance or speed. Moreover, there is
evidence from the driving literature that visual angle is
sufficient to regulate car-following (Anderson & Sauer,
2007).

Visual angle

The leader’s visual angle, a, is a function of the
distance between leader and follower, Dx, and the
leader’s size, w. Assuming the latter is fixed, visual
angle depends only on the distance between leader and
follower, so maintaining a constant distance behind the
leader (the distance strategy) can be achieved by
maintaining a constant visual angle of the leader. The
change in visual angle, or optical expansion, ȧ, is a
function of the relative speed and distance between the
leader and follower, but a constant relative speed (the
speed-matching strategy) can be achieved by cancelling
changes in the leader’s visual angle (i.e., nulling optical
expansion). Anderson and Sauer (2007) proposed that
drivers use a weighted sum of these two variables to
follow a lead vehicle, which is similar to the linear
strategy (Equation 7).

Binocular disparity and vergence

These behavioral strategies might also be based on
binocular disparity and vergence. Absolute (or retinal)
disparity refers to the difference between the left and
right retinal locations of the projected images of a point
in the scene, and is related to the distance of the point
(Neri, Bridge, & Heeger, 2004). However, the absolute
disparities of points in a static 3D scene depend on the
vergence angle of the two eyes, so the retinal disparities
vary with the fixation distance. Vergence itself provides
information about the fixation distance up to several
meters (Cutting & Vishton, 1995), and is used to scale
perceived distance from the disparities. During fol-
lowing, we will assume that the follower fixates the
leader directly in front of them. A change in the leader’s
distance produces a corresponding change in the
leader’s disparity, which elicits a rapid adjustment in
vergence angle to refixate the leader (Busettini,
Fitzgibbon, & Miles, 2001). Thus, vergence indicates
leader distance, and the combined change in disparity
and vergence specify a change in leader distance
(relative speed).

Alternatively, followers might use relative disparity,
which is the difference between absolute disparities of
two points at different distances. This requires a
stationary visual surround, so that relative disparity is

defined between the leader and the background (Regan,
Erkelens, & Collewijn, 1986). However, during fol-
lowing, the depth difference between the leader and the
background is necessarily large (or else the former
would run into the latter); this creates a large disparity
difference that exceeds Panum’s fusional area, making
relative disparity difficult to detect. It is thus likely that
absolute disparity and vergence are more useful to
control following than relative disparity. In sum,
followers could maintain a constant distance by
holding the disparity and vergence of the leader
constant, and maintain relative speed at zero by nulling
changes in disparity and vergence. For convenience, we
will refer to this combination of absolute disparity and
vergence as ‘‘disparity.’’

There is some reason to suspect that disparity might
be more effective in pedestrian following than car-
following. It has been reported that optical expansion
plays a greater role with large objects like cars
(Anderson & Sauer, 2007), which subsume large visual
angles, while disparity plays a greater role small objects
like cricket-balls (Regan & Beverley, 1979). The human
body is somewhere in between cars and cricket-balls,
and typically subsumes intermediate visual angles
during following, so either variable might dominate, or
they could be combined. Rushton and Wann (1999)
reported that subjects used both optical expansion and
binocular disparity in a one-handed catching task,
relying on whichever cue specified the earliest time of
arrival.

When the leader speeds up relative to the follower,
the leader’s uncrossed disparity increases (eliciting a
decrease in vergence angle) and its visual angle
decreases (optical contraction), and vice versa when the
leader slows down. These variables are thus normally
coupled, but they can be dissociated in virtual reality.
We manipulated disparity and visual angle indepen-
dently by systematically expanding or shrinking a
virtual lead object as it moved in depth relative to the
walking participant. If followers rely on only one of
these optical variables, they should speed up when it
specifies an increase in leader speed (and vice versa),
but they should be unaffected by changes in the other
variable. On the other hand, if followers rely on both
variables, their behavior should be sensitive to changes
in both.

In sum, there are several candidate models of
following behavior, and several hypotheses about the
optical information used to control that behavior.
Experiment 1 was designed to test the six following
models, including (a) initial distance, (b) free parameter
distance, (c) velocity-based distance, (d) speed, (e) ratio
of speed and distance, and (f) linear combination of
speed and distance. Experiment 2 was then designed to
test whether the visual control law is predominantly
based on (a) change in visual angle, (b) change in
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binocular disparity and vergence, or (c) some combi-
nation of the two.

Experiment 1: Behavioral dynamics
of following

Experiment 1 investigated the behavioral dynamics
of following, with the aim of deriving a physical model
of following behavior. Data were collected from
leader–follower dyads in which the leader was a
confederate, and follower acceleration was simulated
using six candidate models.

Methods

Participants

Ten undergraduate and graduate students, six female
and four male, participated as followers in Experiment
1. None reported having any visual or motor impair-
ment. They were paid for their participation. The study
was conducted in accordance with the Declaration of
Helsinki.

Apparatus

The experiment was conducted in the Virtual
Environment Navigation Laboratory (VENLab) at
Brown University. Leader and follower walked in a 12
· 12 m room, while wearing head-trackers affixed to
bicycle helmets. Their head position and orientation
were recorded at a sampling rate of 60 Hz by a hybrid
inertial-ultrasonic tracking system (IS-900, Intersense,
Billerica, MA). Note that virtual displays were not
present in this experiment.

Procedure

A confederate acted as the ‘‘leader,’’ and the
participant acted as the ‘‘follower.’’ The participant was
instructed to follow the leader at a constant distance.
At the beginning of each trial, they positioned
themselves on marks on the floor with an initial
distance of either 1 m or 4 m. To initiate each trial, an
experimenter gave a verbal ‘‘go’’ command to both
walkers, and the leader began walking at a self-selected
comfortable speed in a straight line. After a random
number of steps (two, three, or four steps), the leader
would change speed (increase, decrease, or remain
constant) for three steps, and then return to his initial
speed. The leader read the number of steps and speed
change for each trial from a set of index cards they
carried with them. Conditions were randomized before
the experiment and presented in that order.

Design

Experiment 1 had a 2 · 3 · 3 (initial distance ·
speed change · steps) factorial design, with three trials
per condition, for a total of 54 trials per participant. All
factors were within-subject.

Data analysis

The time series of the leader’s and the follower’s
head position in three dimensions were recorded, but
only data in the horizontal x,y plane were analyzed.
Each time series was filtered, using a forward and
backward fourth-order low-pass Butterworth filter with
a cutoff frequency of 1 Hz, to reduce error due to the
position tracker and attenuate anterior–posterior ac-
celerations due to the step cycle. To eliminate edge
effects from filtering at the end of the trial (endpoint
error), the position time series were extended by 2 s
using linear extrapolation based on the last 0.5 s of data
(Howarth & Callaghan, 2009; Vint & Hinrichs, 1996).
The extrapolated data were only used to extend the
time series during filtering, and were not used for any
subsequent analysis. The filtered position data were
differentiated to produce a time series of speed, and
differentiated again, to produce a time series of
acceleration. Due to tracking errors, 78 trials (14%)
were excluded from further analysis.

Model fitting

The first 1.5 s of each time series was truncated to
eliminate the large initial acceleration associated with
the stand-to-walk transition. Leader and follower
accelerations were highly correlated during this tran-
sient, likely due to the simultaneous ‘‘go’’ command
rather than the visual coupling. The overall pattern of
results is similar with or without truncation.

To compare the six hypothetical models, each was fit
to all time series of follower acceleration. Each trial was
simulated by taking as inputs the time series of leader
speed (for the speed, velocity-based distance, ratio, and
linear models), the time series of leader position (for the
initial distance, free parameter distance, velocity-based
distance, ratio, and linear models), and/or the initial
distance between leader and follower (for the initial
distance, velocity-based distance, ratio, and linear
models). Performance was evaluated on each trial by
computing the correlation coefficient (Pearson’s r)
between the simulated follower acceleration produced
by each model with the observed follower acceleration.
The Broyden–Fletcher–Goldfarb–Shanno (Shanno,
1985) method for numerical optimization was used to
find the set of parameter values that maximized the
mean value of r for each model across all trials using a
least-squares criterion. The same parameter values were
used for all participants to avoid overfitting and to
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yield a model that generalizes to novel (untested)
pedestrians. For statistical comparisons, mean r values
for each participant were computed using Fisher’s z0

transform to correct for nonnormality (Martin &
Bateson, 1986); the mean z0 values were transformed
back into the mean r values reported below. The root-
mean-squared-error (RMSE) between the two time
series was also analyzed.

Results

Human data

The untruncated time series of leader and follower
speed, and leader and follower acceleration, are shown
for a representative trial in Figure 1. Notice that in this
trial the leader first accelerates quickly (to 1.5 m/s),
then decelerates briefly (to 1.1 m/s), and finally returns
to a roughly constant speed (1.5 m/s).

Figure 2 presents the time series of leader speed for
every trial, with the analyzed portion in blue. Note that
blue traces show three distinct clusters, which corre-
spond to trials in which the leader increased, decreased,
or remained at the same speed, indicating that the
confederate successfully produced distinct patterns of
velocity change.

As a measure of the temporal coordination between
follower and leader, we computed the cross-correlation
between the two time series of acceleration for each
trial, varying the time delay from�2000 ms to þ2000
ms (positive delays imply that the follower time series
lags behind the leader time series). The mean optimal
delay in speed-up and slow-down trials did not differ,
t(303) ¼ 6.11, p . 0.05, so they were combined;
histograms for the resulting speed change condition
and the constant speed condition appear in Figure 3.

The cross-correlations were quite high in the speed
change condition (mean r¼ 0.68, median r¼ 0.67) and
slightly lower in the constant speed condition (mean r¼
0.53, median r ¼ 0.50), indicating a strong temporal
coupling between follower and leader. The mean
optimal delay in the speed change condition (M ¼ 420

ms, Mdn¼ 417 ms, SD¼ 373 ms) was significantly
greater than that in the constant speed condition (M¼
25 ms, Mdn¼ 0 ms, SD ¼ 530 ms), t(435) ¼ 8.87, p ,
0.001, which in turn was not significantly different from
zero, t(131)¼0.557. By design, there was little variation
in leader speed during constant speed trials, yielding
lower correlations and poorer estimates of the delay.
Therefore, we take the mean optimal delay of 420 ms in
the speed change condition as an estimate of the
follower’s visual–motor delay. This value is similar to
estimates from other locomotor tasks (e.g., Benguigui,
Baurés, & Le Runigo, 2008; Cinelli & Warren, 2012; Le
Runigo, Benguigui, & Bardy, 2010). In sum, the leader
produced marked changes in speed, and the follower
responded with closely coordinated speed changes after
a short delay.

Model evaluation

Figure 4 presents a plot of the simulated and
observed follower acceleration (both in red), together
with the observed leader acceleration (in blue) for each
of the six models for the same sample trial. The main
results for each model are listed in Table 1.

Statistical tests were performed on the participant
means of the z-transformed r values for each model,
using the overall best fit parameters for that model. A
one-way repeated measures analysis of variance showed
significant differences between the models, F(5,45) ¼
156.96, p , 0.001. Post hoc comparisons for all
pairwise combinations were conducted using Bonfer-
roni adjusted alpha levels of 0.0033 (0.05/15). Results
indicated that the mean r values for the speed (M ¼
0.672, SD¼ 0.111), ratio (M¼ 0.673, SD¼ 0.111), and
linear (M ¼ 0.673, SD ¼ 0.110) models were not
significantly different from one another, p . 0.05, and
were all significantly greater than those for the initial
distance (M ¼ 0.372, SD ¼ 0.080), free parameter
distance (M ¼ 0.398, SD ¼ 0.069), and velocity-based
distance (M ¼ 0.518, SD ¼ 0.081) models, p , 0.001.
Mean r was significantly greater for the velocity-based
distance model than the initial distance and free

Figure 1. (a) Time series of leader and follower speeds for a

representative trial (participant 3, trial 54). (b) Time series of

leader and follower accelerations for the same trial.

Figure 2. Time series of leader speed for all trials. Truncated

time series (blue) begins 1.5 s after trial onset, and does not

include initial acceleration from standstill (gray).
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parameter distance models (p , 0.01), which did not

differ from one another (p ¼ 1.00). Thus the follower

data were fit significantly more closely by models that

contain a relative speed term than by the distance-

based models.

We note that the correlations between the time series

of speed are generally higher than those for accelera-

tion, but reveal a similar pattern. When using the same

best-fit parameter values, the mean r values are 0.87,

0.87, 0.87, 0.56, 0.47, and 0.45, for the speed, ratio,

linear, initial distance, free parameter distance, and
velocity-based distance models, respectively.

A similar pattern of results holds for statistical tests
on RMSE in acceleration, again using the same
parameters (see Table 1). A one-way repeated measures
analysis of variance showed significant differences in
mean RMSE between the models, F(5, 45) ¼ 164.16, p
, 0.001. Bonferroni-adjusted post hoc comparisons
indicated that the mean RMSE values for the speed (M
¼ 0.210 m/s2, SD¼ 0.055 m/s2), ratio (M¼ 0.210 m/s2,
SD¼ 0.054 m/s2), and linear (M ¼ 0.212 m/s2, SD ¼

Figure 4. Time series of leader (blue) and follower (red) acceleration for a representative trial (participant 3, trial 54), compared with

the predicted acceleration (dashed red) for each of the six models using the best-fit parameters. RMSE and r values indicate goodness

of fit between each model and follower data.

Figure 3. Histograms of (a) cross-correlation values and (b) optimal delays between leader and follower data, for speed change (blue)

and constant speed (grey) trials.
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0.054 m/s2) models were not significantly different from
one another, p ¼ 1.00, but were all significantly lower
than those for the initial distance (M¼ 0.611 m/s2, SD
¼ 0.092 m/s2), free parameter distance (M¼ 0.825 m/s2,
SD¼ 0.195 m/s2), and velocity-based distance (M ¼
0.79 8 m/s2, SD¼ 0.086 m/s2) models, p , 0.001. Mean
RMSE was significantly lower for the initial distance
model than the free parameter and velocity-based
distance models (p , 0.01), but they did not
significantly differ from one another, p ¼ 1.00.

In sum, by all of these measures, following behavior
was best described by the simple speed-matching
model; the ratio and linear models (which also contain
a relative speed term) do not improve upon it, despite
having more free parameters (Table 1).

Damping

Many models of human locomotor behavior (Fajen
& Warren, 2003, 2007; Garcia, Kuo, Peattie, Wang, &
Full, 2000) include a damping term, which reflects
resistance to change and acts to reduce oscillations.
However, damping is often absent from models of
following, both in cars (Anderson & Sauer, 2007;
Gazis, Herman, & Rothery, 1961; Helly, 1959; Lee &
Jones, 1967) and in pedestrians (Lemercier et al., 2012).

We tested whether adding damping to the speed and
initial distance models would better match the human
data by modifying Equations 1 and 3 to include a term
inversely proportional to the follower’s speed, with an
additional free parameter d:

€xf ¼ c � _xl � _xf
� �

� d � _xf ð8Þ

€xf ¼ c � Dx� Dx0½ � � d � _xf ð9Þ
Mean r was slightly higher for the speed-matching
model with damping (M¼0.678, SD¼0.106, c¼1.93, d
¼�0.15) than without (M ¼ 0.672, SD¼ 0.111, c ¼
1.87), but this difference was not significant, t(9)¼ 2.14,
p . 0.05 (paired sample t test). Likewise, mean r was
slightly but not significantly greater for the initial
distance model with damping (M¼ 0.374, SD¼0.081, c
¼ 3.35, d ¼�0.068) than without (M ¼ 0.372, SD ¼
0.080, c¼ 3.49), but not significantly, t(9)¼ 1.28, p .
0.05. Furthermore, the best fit for parameter d was very
near zero. Taken together, these results indicate that
adding a damping term does not improve performance
over the simpler speed and initial distance models.

Visual–motor delay

By definition, following involves a unidirectional
coupling, because the follower is outside the leader’s

Model Mean r

Mean RMSE

(m/s2)

Number of

parameters Parameter values Duncan grouping

Speed-matching 0.67 0.21 1 c ¼ 1.87 a, d

Initial distance 0.37 0.61 1 c ¼ 3.49 b, e

Free parameter distance 0.40 0.82 3 c ¼ 2.69 b

Dx0,1m ¼ 1.32

Dx0,4m ¼ 3.93

Velocity-based distance 0.52 0.80 3 c ¼ 2.44 c

a ¼ 0.35

b ¼ 0.75

Ratio 0.67 0.21 3 c ¼ 2.09 a

M ¼ 0.004

L ¼ 0.16

Linear 0.67 0.21 4 c1 ¼ 2.11 a

c2 ¼ 0.02

a ¼ 23.31

b ¼ �16.91
Speed þ damping 0.68 0.21 2 c ¼ 1.93 d

d ¼ �0.15
Distance þ damping 0.37 0.66 2 c ¼ 3.35 e

d ¼ �0.07
Speed þ delay 0.68 0.21 1 c ¼ 1.83 d

Optical expansion 0.62 0.23 1 c ¼ 13.00 f

Table 1. Mean correlation coefficients (r), root mean squared error, and parameters for the six behavioral models, for key models with
added damping and with delay, and for the optical expansion control law. R values are from the inverse of Fisher’s z0 transform.
Duncan grouping indicates significance at p ¼ 0.05; models with the same letter are not significantly different.
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field of view; thus, followers respond to leaders with a
visual–motor delay of about 420 ms, but not vice
versa. At first glance, this result suggests that an
explicit delay term should be added to the speed-
matching model (Equation 2). Such terms are found in
many models of following (e.g., Chandler, Herman, &
Montroll, 1958; Lemercier et al., 2012), but not all
(e.g., Anderson & Sauer, 2007). At present, Equation
4 uses the difference in speed between leader and
follower at time t to govern the follower’s acceleration
at the same instant t. But parameter c in Equations 1
and 2 modulates the follower’s rate of response to a
given speed difference, implicitly introducing delay
into the model. To analyze the empirical adequacy of
this solution, we computed the cross-correlation
between time series of follower acceleration for the
model and the data on each trial As shown in Figure 5,
for both speed change (M¼ 71 ms, Mdn¼ 0 ms, SD¼
217 ms) and no speed change conditions (M ¼�0.45
ms, Mdn¼ 0 ms, SD¼ 247 ms), the optimal delays are
sharply peaked around zero, indicating that the speed-
matching model implicitly accounts for visual–motor
delay.

To determine whether performance would be im-
proved with an explicit delay term, we added a constant
visual–motor delay to the speed-matching model. We
modified Equation 1 so that the follower’s acceleration
at time t is a function of the speed difference at a
previous time in the past, t – td, where td¼ 420 ms:

€xfðtÞ ¼ c � _xlðt� tdÞ � _xfðt� tdÞ
� �

ð10Þ

As before, we fit Equation 8 using numerical optimi-
zation to maximize the mean value of r across all trials.
A paired-sample t test revealed that this model (M ¼
0.633, SD¼ 0.101, c ¼ 1.52, td¼ 301 ms) failed to
perform as well as the simpler model without a delay
term (M¼ 0.672, SD¼ 0.111, c¼ 1.87); t(9)¼ 2.49, p ,

0.05. Thus, including an explicit visual–motor delay
does not improve the performance of the speed-
matching model, at least over the observed range of
speed differences.

Discussion

The simple speed-matching model performs just as
well as the more complicated ratio and linear models,
and significantly better than any of the distance-based
models. Moreover, adding a damping term or an
explicit delay term does not improve its performance.
Taken together, these results support the hypothesis
that pedestrian following is best described by a simple
physical model in which the follower matches the
leader’s speed, regardless of distance.

It is surprising that participants were not influenced
by the leader’s distance, despite being instructed to
follow at a constant distance. Distance has been found
to increase with velocity in car-following (Filzek &
Breuer, 2001), and Lemercier et al. (2012) included a
distance term when modeling pedestrians walking the
perimeter of a circular arena, although they did not
did not report the degree to which this improved
performance over a simple speed-matching model.
Here, we find no evidence of a preferred interpersonal
distance; rather, followers match the leader’s speed
independent of distance over a range of 1–4 m. This
principle is inconsistent with distance-based models of
collective behavior, in which individuals are attracted
to distant neighbors and repelled from nearby
neighbors, yielding a preferred equilibrium distance
(Huth & Wissel, 1994; Reynolds, 1987). In contrast, it
is consistent with velocity-based models in which
individuals match the speed and direction of their
neighbors (Ondřej et al., 2010; Vicsek & Zafeiris,
2012). The advantage of such a strategy is that it yields
reliable following and coherent swarms that are robust
to variations in density.

We should point out several constraints in Experi-
ment 1 that may limit the generality of this conclusion.
First, trials were fairly short, in both distance (12 m)
and duration (8 s). It is possible that a preferred
distance might only be revealed over longer periods of
following. Second, we tested a limited range of initial
leader–follower distances (1 and 4 m); although this is
fairly typical of pedestrian groups, distance may play a
role in speed control at larger distances. Finally,

Figure 5. Histogram of optimal delays from the cross-correlation of follower data and follower model, for (a) speed change trials and

(b) constant speed trials.
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walking speeds were in the range of 1–2 m/s and speed
changes were limited to a range of 60.5 m/s (Figure 2).
It is possible that greater variation in speed might reveal
a velocity-dependent distance effect. Nevertheless, we
find that the speed-matching model performs well in
conditions relevant to everyday locomotion, namely
following another pedestrian within a few meters at
typical walking speeds. This raises the question of the
optical information that is used to achieve speed-
matching, to which we turn in Experiment 2.

Experiment 2: Visual control of
following

Experiment 2 was designed to investigate the optical
information used to control walking speed in pedestri-
an following. Data were collected from participants
following a moving object in virtual reality, while the
visual angle and binocular disparity of the object were
orthogonally manipulated. This allowed us to deter-
mine the optical information followers use to match the
leader’s speed, and to derive a visual control law for
one-dimensional following.

It has been observed that when viewing a virtual
environment in a head-mounted display (HMD),
distances greater than a few meters tend to be
underestimated by about 50% (Loomis & Knapp, 2003;
Thompson et al., 2004). This underestimation may be
attributed in part to the fact that while vergence varies
normally in an HMD, accommodation is constant due
to the fixed focal length of the HMD lens (the virtual
image is typically at 1–2 m). This vergence/accommo-
dation mismatch could result in an underscaling of
distance from binocular disparity for distances beyond
a few meters. However, it has been shown that after 5–
10 min of walking with visual feedback in virtual
reality, distance is rescaled and the underestimation is
eliminated (Mohler, Creem-Regehr, & Thompson,
2006; Richardson & Waller, 2007). In the present
experiment, the virtual ‘‘leader’’ appeared at a distance
of only 3 m and participants were given 5 min of
familiarization (including five practice trials in which
the virtual ‘‘leader’’ moved at a constant speed) in the
virtual environment prior to testing, which was
sufficient to rescale any underestimation. The results
should thus be unaffected by the fact that displays were
viewed in an HMD.

Methods

Participants

Twelve undergraduate and graduate students, six
male and six female, participated in Experiment 2.

None reported having any visual or motor impairment.
They were paid $8 for their participation, plus $5 to
cover travel expenses. The study was conducted in
accordance with the Declaration of Helsinki.

Apparatus

Experiment 2 was conducted in the Virtual Envi-
ronment Navigation Laboratory (VENLab) at Brown
University. Participants walked freely in a 12 · 12 m
room while viewing a virtual environment through a
head-mounted display (SR-80A, Rockwell Collins,
Cedar Rapids, IA). The HMD provided stereoscopic
viewing with a 638 · 538 (horizontal · vertical) field of
view, resolution of 1280 · 1024 pixels in each eye and
complete binocular overlap. Displays were generated
on a Dell XPS workstation (Round Rock, TX) at a
frame rate of 60 fps, using the Vizard software package
(WorldViz, Santa Monica, CA). Head position and
orientation were recorded as in Experiment 1. Head
coordinates from the tracker were used to update the
display with a latency of approximately 50 ms (three
frames).

Displays

The virtual environment (see Figure 6) included a
visual surround consisting of a distant, large vertical
cylindrical surface (radius 500 m) mapped with a
grayscale granite texture, but no ground plane or
horizon. A blue home pole (radius 0.3 m, height 1.6 m)
with a granite texture appeared at the center of the
environment, and a red target pole (radius 0.3 m, height
1.6 m) appeared in front of the participant, at an initial
distance of 3 m.

Procedure

To begin each trial, participants stood at the blue
home pole, faced the red target pole, and pushed a
button on a handheld mouse, which caused the target
pole to turn green. A sound effect (‘‘boing!’’) provided
feedback that the button press was successful. After 1 s,
the green target pole began moving on a straight path
away from the participant in depth. During the first 0.5
s of the trial, the pole’s velocity increased linearly from
0 to 0.8 m/s. Its speed then remained constant for a
variable amount of time (M ¼ 2.5 s, SD¼ 1 s) until a
‘‘manipulation’’ changed the target speed specified by
binocular disparity (the ‘‘disparity-specified speed’’) or
by visual angle (the ‘‘expansion-specified speed’’) for 3 s
(see Table 2).

Binocular disparity was manipulated by instanta-
neously increasing the pole’s speed (from 0.8 m/s to 1.2
m/s), decreasing it (from 0.8 to 0.4 m/s), or holding it
constant (at 0.8 m/s); the pole remained at the new
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speed for 3 s, and then instantaneously returned to its
original speed (0.8 m/s). Visual angle was manipulated
by growing or shrinking the target pole so that its visual
angle was consistent with a pole increasing or decreas-
ing its speed for 3 s (from 0.8 to 0.4 or 1.2 m/s). This was
accomplished by simulating an invisible ‘‘canonical’’
pole of the same size moving at the desired speed, and
uniformly growing or shrinking the actual target pole so
that its visual angle matched that of the canonical pole
at every time step. Thus, a change in disparity-specified
speed (�0.4, 0.0, orþ0.4 m/s) was isolated by
simultaneously decreasing the target’s speed and size (or
increasing them), while a change in expansion-specified
speed (�0.4, 0.0, orþ0.4 m/s) was isolated by increasing
the target’s size only (or decreasing it). The three levels
of each optical variable were fully crossed, for a total of
nine conditions (Table 2).

Participants were instructed to follow behind the
pole as it moved across the room, ‘‘as if you were
following a friend down the street.’’ No further

instructions were provided, and in particular no
instructions were given regarding distance or speed.

Design

Experiment 2 had a 3 · 3 (disparity change ·
expansion) factorial design, with eight trials per
condition, for a total of 72 trials per participant. All
variables were within-subject, and trials were presented
in a random order.

Data Analysis

The time series of head position were processed as in
Experiment 1, to yield a time series of leader and
follower speed for each trial. The change in walking
speed (DSpeed) during the 3 s visual manipulation on
each trial was computed by subtracting the mean speed
in the last 1 s of the visual manipulation from the mean
speed in the 1 s prior to the manipulation. Thus, a
positive value of DSpeed indicates that the participant

Figure 6. (a) First-person view of the virtual display used in Experiment 2. The blue pole is the ‘‘home’’ pole, which participants walk

to before turning to face the red ‘‘target’’ pole. (b) First-person view of the target pole during following. The target pole turns green

and begins moving after a button press by the participant.

Table 2. Matrix of visual manipulation conditions in Experiment 2. The target pole’s initial speed is 0.8 m/s, so a speed of 0.4 m/s

specifies a slow down while 1.2 m/s specifies a speed up. Shaded cells signify conditions in which both sources of information are

congruent (specify the same speed); unshaded cells signify that the sources are incongruent (specify different speeds).
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sped up during the manipulation, while a negative value
indicates that a participant slowed down. The mean of
these DSpeed values was computed for each participant
and each condition, and used as a measure of followers’
behavioral response to each visual manipulation.

Results and discussion

The observed changes in walking speed produced by
visually specified changes in target speed of 60.4 m/s
are presented in Figure 7. On average, an expansion-
specified speed decrease elicited a comparable decrease
in walking speed (DSpeed ¼�0.30 m/s), a constant
visual angle yielded no change in walking speed
(DSpeed ¼�0.020 m/s), and an expansion-specified
increase in target speed elicited a moderate increase in
walking speed (DSpeed¼ 0.14 m/s), In contrast,
disparity-specified changes in target speed of 60.4 m/s
elicited very little response. On average, all disparity-
specified speed produced a small decrease in walking
speed, including a disparity-specified speed decrease
(DSpeed ¼�0.031 m/s), constant disparity (DSpeed ¼
�0.060 m/s), and, surprisingly, a disparity-specified
speed increase (DSpeed ¼�0.093 m/s).

This pattern of results—a large effect of expansion
and a minimal effect of change in disparity—was
observed in all nine conditions, regardless of whether
the optical variables were congruent or in conflict
(Figure 7). A two-way analysis of variance confirms a
significant main effect of expansion, F(2, 144)¼ 221.58,
p , 0.001, a marginally significant effect of disparity,
F(2, 144)¼ 3.149, p ¼ 0.046, and no interaction,
F(4, 142)¼ 0.151, p . 0.05. Measures of effect size
indicate that optical expansion (x2¼ 0.690) explained a
far greater proportion of the variance in follower speed
than changes in disparity (x2 ¼ 0.007).

We also noted an asymmetry in the follower’s
response to a decrease compared to an increase in
leader speed, indicating a greater influence of optical
expansion than optical contraction on walking speed.
The magnitude of DSpeed for expansion (M¼ 0.31 m/s,
SD¼0.13 m/s) was twice that for contraction (M¼0.14
m/s, SD¼ 0.13 m/s), t(100)¼ 6.30, p , 0.001. This may
reflect a fundamental asymmetry in following behav-
ior—for example, followers may prioritize deceleration
to avoid collisions in response to optical expansion
(emergency braking) over acceleration in response to
optical contraction.

To further analyze the relative influence of these
optical variables on walking speed, we performed a
stepwise multiple linear regression. Both expansion (b¼
0.85, p , 0.001) and disparity (b¼ 0.10, p¼ 0.015) were
significant predictors of DSpeed (adjusted R2 ¼ 0.737),
but the expansion weight was 8.5 times the disparity
weight. A model that included expansion alone
accounted for 73% of the variance (adjusted R2¼
0.728); thus adding disparity to the model explained
only an additional 1% of the variance. These results
indicate that followers are sensitive to information
from both optical expansion and binocular disparity,
but rely primarily on expansion.

In sum, the results of Experiment 2 indicate that
optical expansion, rather than change in binocular
disparity and vergence, is the primary optical informa-
tion used to control speed in human following. Walking
speed varied significantly in response to an optical
expansion and contraction, while corresponding changes
in disparity elicited only marginal changes in speed.

General discussion

The results of Experiment 1 show that followers
match the speed of the leader, rather than maintaining a
constant distance or using a combination of speed and
distance, at least over distances of 1 to 4 m. The results
of Experiment 2 show that followers primarily rely on
optical expansion to regulate their walking speed.
Synthesizing these two results allows us to formulate a
visual control law for speed control in pedestrian
following that can account for the observed behavior.

Visual control law for following

The simplest speed control law of this form would be
one in which the follower nulls the optical expansion of
the leader; that is, the follower accelerates if the leader’s
visual angle is decreasing, decelerates if it is increasing,
and maintains the current speed if visual angle is
constant. Formally, this control law for following by

Figure 7. Mean changes in speed for the nine visual

manipulation conditions, averaged across trials and partici-

pants. Positive values specify an increase in walking speed as a

result of the manipulation; negative values specify a decrease in

speed. Error bars represent standard error of the mean.
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optical expansion can be simply stated as:

€xf ¼ �bȧ ð11Þ
where b is a constant and ȧ is the rate of optical
expansion of the leader. It can be shown that this
control law is mathematically related to the speed-
matching model (Equation 2) for a leader of constant
size; a derivation is provided in Appendix A.

To test this control law, we fit Equation 9 to the data
from Experiment 1 as before, using numerical optimi-
zation to maximize the mean value of z0-transformed r
over all trials. The only input to the model was the rate
of change of the leader’s visual angle computed from
the data, and the output was the follower’s predicted
acceleration. Figure 8 presents a simulation of the same
sample trial as in Figure 3. A paired-sample t test on
the mean z0-transformed r values showed that the
speed-matching model (M ¼ 0.672, SD¼ 0.111)
provided a slightly better fit to than the optical
expansion control law (M ¼ 0.624, SD¼ 0.086, c ¼
13.00), t(9)¼ 7.81, p , 0.001. This result suggests that
followers rely primarily, but perhaps not entirely, on
optical expansion to regulate their speed, consistent
with the results of Experiment 2. Binocular disparity
may provide additional information necessary to
perceive relative speed.

Further questions

Armed with an understanding of speed control in
one-dimensional following, we can pursue further
questions about visually guided pedestrian interactions.
The first question is whether the speed-matching model
generalizes from following, with a unidirectional

coupling, to dyads walking side-by-side, with a
bidirectional coupling. Results from Page and Warren
(2012, 2013) indicate that the answer is yes: the speed-
matching model again best accounts for side-by-side
walking, and offers a general description of the
behavioral dynamics of coordinating walking speed
with one’s neighbors. This is somewhat surprising,
because it shows that dyads do not actually prefer to
walk side-by-side.

The second question involves generalizing from one
dimension to the case of two-dimensional following. In
this situation, the follower must now regulate not only
speed, but also heading direction, essentially matching
the leader’s velocity. A simple approach would be to do
so by controlling speed and heading independently,
combining the speed-matching model (Equation 2) with
a direction-matching or heading alignment model
(Bonneaud & Warren, 2013; Vicsek et al., 1995), in
which the difference in heading direction is nulled. One
visual control law for heading alignment might be the
constant bearing (CB) strategy, which provides a good
description of how pedestrians intercept a moving
target (Fajen & Warren, 2007): steer to null change in
the target’s bearing direction. When the pedestrian and
the target move at approximately the same speed, the
CB strategy yields parallel heading directions. In a
preliminary analysis, Rhea, Cohen, and Warren (2009)
found that the CB model reproduced the follower’s
path when the follower’s speed was greater than or
equal to the leader’s speed. However, when the
follower’s speed was lower than the leader’s, the model
often generated a mirror image of the observed path,
because this solution also maintains the leader at a
constant bearing. We are currently pursuing this
problem experimentally.

A third question is whether the following model can
be scaled up from dyads to account for the collective
behavior of pedestrian groups. It is possible that local
speed-matching and heading alignment provide the
basic coupling between neighbors that yields coherent
crowd behaviors. For example, can speed-matching
explain how individuals in a group adopt a common
walking speed? In a preliminary analysis of groups of
four pedestrians walking to a goal, Rio, Bonneaud, and
Warren (2012) showed that the speed-matching model
(Equation 2) predicts the acceleration of the two rear
pedestrians based on the speed of the two front
pedestrians. Further experiments are in progress to
determine whether the speed-matching strategy extends
to larger crowds.

Finally, a model for following based on speed-
matching or optical expansion may have applications
to pedestrian models for animation and simulation,
assistive technology for mobility, and social and swarm
robotics (Gockley, Forlizzi, & Simmons, 2007; Mon-
teiro & Bicho, 2010).

Figure 8. Follower acceleration for the representative trial in

Figure 2 (participant 3, trial 54), as observed and as predicted

by the optical expansion model. RMSE and r values indicate

goodness of fit.
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Conclusion

Pedestrian following is an important locomotor
behavior, both because it is common in our everyday
experience and because it forms a basis for the more
complex behavior of small groups and large crowds.
Here we have characterized the behavioral dynamics of
one-dimensional following using a speed-matching
model, which can be implemented by a visual control
law based on nulling optical expansion. This model
provides a basis for understanding following in two
dimensions and coordination among neighbors in a
crowd. In addition to the elementary behaviors of
steering, obstacle avoidance, and interception, new
components for speed-matching and heading alignment
are key steps toward a full model of pedestrian and
crowd behavior (Bonneaud & Warren, 2013; Warren &
Fajen, 2008).

Keywords: visual control, locomotion, pedestrian
model, crowd dynamics
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Appendix A

The visual angle control law (Equation 9) is:

€xf ¼ �b
d

dt
a½ � ðA1Þ

where a is the visual angle that the leader subtends at
the follower’s eye. We can rewrite visual angle in terms
of real-world variables:

a ¼ 2arctan
w

2Dx

� �
ðA2Þ

where w is the width of the leader and Dx is the distance
between leader and follower. Substituting this formula
into Equation A1 yields:

€xf ¼ �b
d

dt
2arctan

w

2Dx

� �h i
ðA3Þ

Taking the derivative in Equation A3, using the chain
rule, yields:

€xf ¼ �2b
1

1þ w
2Dx

� �2

 !
d

dt

w

2Dx

h i
ðA4Þ

€xf ¼ �2b
1

1þ w
2Dx

� �2

 !
� w

2Dx2
D _x

� �
ðA5Þ

Simplifying and combining terms in Equation A5
yields:

€xf ¼
bw

Dx2 þ w2

4

 !
D _x ðA6Þ

Thus, the expansion model (Equation A6) resembles
the speed-matching model (Equation 2), except that
the coefficient for the expansion model (in parenthe-
ses) is a nonlinear function of leader size w and
distance Dx.
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