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Abstract Pedestrian following is a common behavior, and may provide a key link
between individual locomotion and crowd dynamics. Here, we present a model for
following that is motivated by cognitive science and grounded in empirical data.
In Experiment 1, we collected data from leader-follower pairs, and showed that a
simple speed-matching model is sufficient to account for behavior. In Experiment 2,
we manipulated the visual information of a virtual leader, and found that followers
respond primarily to changes in visual angle.

Finally, in Experiment 3, we use the speed-matching model to simulate speed
coordination in small crowds of four pedestrians. The model performs as well in
these small crowds as it did in the leader-follower pairs. This cognitively-inspired,
empirically-grounded model can serve as a component in a larger model of crowd
dynamics.
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1 Introduction

Crowds are complex systems, made up of individual pedestrians who interact with
one another and their environment to exhibit emergent collective behavior [1]. One
of the most successful methods for studying crowd behavior is simulation with
individual-based models of locomotion [2], such as the social force model [3, 4].
By specifying the local behavior of pedestrians, and the interactions between them,
large-scale patterns emerge at the level of the crowd, such as lane formation [3, 5],
jamming [6], stop-and-go waves [3, 7], and turbulence [8].
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Existing crowd models stand to benefit from two underutilized sources of
information. First, they should take into account findings from cognitive science,
which yields results about the human capabilities for perception, action, and
cognition that can be used to inspire new models [9, 10], and generate constraints
which limit the space of possible models. Second, models should be tested with
experimental and observational data. This has been recognized since the earliest
work on crowd locomotion [12], but despite recent efforts [13–17], such empirical
validation remains uncommon.

To address these concerns, we have adopted a modeling program motivated by
cognitive science and grounded in experimental data. We utilize the behavioral
dynamics framework [18], which integrates an information-based approach to
perception [19] with a dynamical systems approach to action [20, 21]. A full
understanding of behavior in this framework consists in specifying how information
about the environment is picked up by the agent and used to control action (a control
law), and a low-dimensional description of the global behavior that arises as a result
(a behavioral strategy). We use experimental data on human locomotion to test
hypotheses about these processes, and to generate models of pedestrian behavior
[22, 23].

This paper applies our approach to the case of pedestrian following. Following
is a common behavior, and may provide a key link between individual locomotion
and crowd dynamics [24]. Successful followers must control their speed to stay
behind the leader, and control their heading to stay on course with the leader. Here
we focus on speed control. Our goal is to model the behavioral strategy and visual
control law governing following in dyads, and then use this model to simulate the
emergent behavior of small crowds.

In Experiment 1, we test candidate behavioral strategies against data collected
from leader-follower pairs. In Experiment 2, we test candidate sources of visual
information against data collected from pedestrians following a leader in virtual
reality. In Experiment 3, we extend the model to simulate speed coordination in
small crowds.

2 Experiment 1: Behavioral Dynamics of Following

2.1 Background

The goal of Experiment 1 was to determine the behavioral strategies used to control
pedestrian following. There are a number of candidate strategies, many of which
have been studied in the context of car following [25].

Distance One strategy is for the follower to maintain a preferred distance from the
leader. The follower’s acceleration Rxf t each time step is given by:

Rxf D c � Œ�x � �x0� (1)



A Data-Driven Model of Pedestrian Following and Emergent Crowd Behavior 563

where �x is the current distance between the leader and follower, �x0 is the
preferred distance, and c is a free parameter. �x0 might be chosen in various ways.
It could be a constant, such as the initial distance between leader and follower, or it
could vary with velocity [26, 27]. In the latter case, the preferred distance is equal to:

Rxf D c � �
�x � ˛ � ˇ Pxf

�
(2)

where Pxf is the follower’s speed and ˛, ˇ, and c are free parameters.

Speed Another strategy is for the follower to match the speed of the leader.
Follower acceleration is given by:

Rxf D c � � Pxl � Pxf

�
(3)

where Pxl is the leader’s speed and c is a free parameter. An equivalent expression
can be written in terms of the relative speed � Px, which is the difference in speed
between the leader and follower:

Rxf D c � Œ� Px� (4)

One advantage of this strategy is that it does not require a preferred value for
distance, like the previous model does. This is an advantage both for the follower
(who does not need to store a fixed distance in memory) and for the model (which
does not require an additional parameter).

Ratio The GHR model [28] is “perhaps the most well-known model” of car-
following [25]. We use a simplified version, which incorporates a ratio of speed
and distance, where follower acceleration is given by:

Rxf .t/ D c � PxM
f � � Px

�xL
(5)

and c, M, and L are free parameters.

Linear A linear combination of the speed and distance models was proposed in the
context of car-following [29]. Again we use a simplified version, which we call the
linear model, where follower acceleration is given by:

Rxf .t/ D c1 Œ� Px� C c2

�
�x � ˛ � ˇ Pxf

�
(6)

where c1, c2, ˛, and ˇ are free parameters.
Thus there are several hypotheses for the behavioral strategy used to control

speed during following. The follower could (1) maintain a particular distance,
(2) match the speed of the leader, or (3) combine speed and distance information.
Experiment 1 was designed to test these strategies against empirical data collected
from real leader-follower pairs.
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2.2 Methods

Participants 10 students (4 male, 6 female), participated in Experiment 1.

Apparatus Experiment 1 was conducted in the Virtual Environment Navigation
Laboratory (VENLab) at Brown University. Participants walked in a 12 � 12 m area,
and wore bicycle helmets to which tracking units were affixed. Head position and
orientation were recorded at a sampling rate of 60 Hz by a hybrid inertial-ultrasonic
tracking system.

Procedure A confederate acted as the ‘leader,’ and the participant as the ‘follower.’
The initial separation was 1 or 3 m. When each trial began, the leader began walking
at a comfortable speed in a straight line. After 2, 3, or 5 steps, the leader would speed
up, slow down, or remain at the same speed for 3 steps. Finally, the leader would
return to his comfortable speed.

Design Experiment 1 had a 2 (initial separation) � 3 (speed up, slow down, or
constant speed) � 3 (number of steps) factorial design, with 3 trials per condition,
for a total of 54 trials per participant. All variables were within-subject, and trials
were presented in a random order.

Data Analysis The time-series of leader and follower head position were filtered,
using a forward and backward 4th-order low-pass Butterworth filter with a cutoff
frequency of 0.6 Hz, to reduce the effects of side-to-side gait oscillations. The
filtered position data were differentiated, to produce time-series of leader and
follower speed and acceleration.

2.3 Results and Discussion

For each trial, five models were used to simulate follower acceleration in response
to the human leader. Root-mean-squared error (RMSE) was used as a measure
of goodness of fit for each model and was used to calculate best fit parameters.
Pearson’s r was used as a second measure of goodness of fit. An optimization
algorithm (BFGS Quasi-Newton method [30]) was used to find the set of parameter
values that minimized mean RMSE for each model.

Figure 1 shows a plot of the acceleration predicted by each of the five models for
a single trial, generated using the best fit parameters.

Table 1 lists mean RMSE and r values for each model.
A one-way ANOVA showed significant differences in RMSE between the

models, F(4,45) D 365.03, p < .001. Post hoc tests using the Bonferroni correction
revealed significant differences between all pairwise combinations of models, p <

.01, except between the speed (0.26, SD D 0.033) and linear (M D 0.25, SD D
0.029) models, which were not significantly different, p > .05.
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Fig. 1 Time-series of acceleration for a single trial

Table 1 Number of parameters, mean RMSE, and mean r values
for five models

Model # Parameters Mean RMSE Mean r

Speed 1 0.26 0.84
Distance 1 0.74 �0.05
Velocity-based distance 2 0.43 0.25
Ratio 3 0.32 0.20
Linear 4 0.25 0.85

These results indicate that the speed model performs as well as the more
complicated linear model, and significantly better than the distance, velocity-based
distance, and ratio models. A model based on speed provides a better fit to the
data than a model based on distance, and adding distance information in the ratio
and linear models does not improve performance. Taken together, the results of
Experiment 1 support the hypothesis that pedestrian followers rely on a simple
strategy of matching the leader’s speed.

Several factors constrained followers’ behavior in Experiment 1, which could
limit the generalizability of our model. First, trials were fairly short, lasting only
about 8 s. It is possible that followers adopt a different behavioral strategy when
following for longer durations. Second, followers started fairly close to the leader;
at longer initial separations, distance information may play a role in addition to or
instead of speed information. Despite these constraints, our model is useful because
it performs well in the situation that is most relevant to everyday locomotion,
following behind a nearby leader, and is robust to changes in initial separation.
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3 Experiment 2: Visual Information for Following

3.1 Background

The behavioral strategies described in Experiment 1 are defined in terms of
real-world variables, like speed and distance. But observers do not have direct
access to these real-world variables; instead, they must rely on information in
the optic array. The goal of Experiment 2 was to determine which source(s) of
information followers use to control behavior. There are a number of candidate
sources; following previous work [31–34], we focus on two of these sources:
binocular disparity and visual angle.

Visual Angle The visual angle of the leader has been used to model car-following
[35]. The leader’s visual angle, ˛, is a function of the distance between leader
and follower, �x, and the leader’s diameter, d. Assuming the leader’s height is
constant, visual angle depends only on the distance between leader and follower,
so maintaining a constant distance behind the leader (a behavioral strategy) is
consistent with keeping the leader at a constant visual angle. The change in visual
angle, P̨ , is a function of the relative speed (and distance) between the leader and
follower, so a constant relative speed can be achieved by nulling changes in the
leader’s visual angle.

Binocular Disparity These strategies can also be implemented using binocular
disparity. Binocular disparity refers to the difference in retinal images that result
from the eyes’ horizontal separation; it is a function of an object’s distance from
an observer. Followers can maintain a constant distance by keeping the relative
disparity between the leader and the background constant, and maintain a constant
relative speed by nulling changes in disparity.

When the leader speeds up relative to the follower, its binocular disparity
increases and its visual angle decreases. Typically, these variables are coupled, but
in virtual reality, they can be dissociated [35]. Disparity and visual angle can be
manipulated independently by expanding or shrinking the leader as it moves relative
to the follower. If followers rely on only one variable, they should speed up when it
specifies an increase in leader speed (or vice versa), but not be affected by changes
in the other. Conversely, if they rely on both variables, behavior will be sensitive to
changes in either one.

Thus there are several hypotheses for the optical information that could be
used to control real-world variables like relative speed. The follower could (1) use
visual angle, (2) use binocular disparity, or (3) use some combination of the two.
Experiment 2 was designed to test these hypotheses against experimental data
collected from real pedestrians following a virtual leader.
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Fig. 2 First-person view of the virtual display used in Experiment 2. (a) The blue ‘home’ pole;
participants walk into it and face the red ‘target’ pole. (b) The ‘target’ pole during following; the
pole turns green and begins moving after a button press by the participant

3.2 Methods

Participants 12 students (6 male, 6 female), participated in Experiment 2.

Apparatus Experiment 2 was conducted in the VENLab. Participants walked in a
12 � 12 m area while viewing a virtual environment through a head-mounted display
(HMD), which provided stereoscopic viewing with a 68ı horizontal � 53ı vertical
field of view with a resolution of 1,280 � 1,240 pixels. Displays were generated
at a frame rate of 60 fps using the Vizard software package. Head position and
orientation were tracked as in Experiment 1, and used to update the display with a
latency of approximately 50 ms (three frames).

Displays The virtual environment was sparse, consisting of a vertical cylindrical
surface (radius 20 m) mapped with a grayscale granite texture and no ground plane.
A blue home pole (radius 0.2 m, height 3.0 m) with a granite texture appeared at the
center of the environment, and a green/red target pole (radius 0.3 m, height 1.7 m)
appeared 1 m away. Figure 2 shows a first-person view of the virtual environment.

Procedure Before each trial, participants stood at the home pole and faced the
target pole. To begin a trial, participants pushed a handheld button, which caused
the target pole to turn green. After 1 s, the target pole began moving through the
environment horizontally in depth. For the first 0.5 s of the trial, the pole’s velocity
increased linearly from 0 to 0.8 m/s. Its speed then remained constant for a variable
amount of time (M D 2.5 s, SD D 1 s) until a “manipulation” lasting 3 s changed
the visual angle and/or the binocular disparity of the target pole. Participants were
instructed to follow the pole; no further instructions were given regarding speed or
distance.

Binocular disparity was manipulated by having the pole speed up (to 1.2 m/s)
or slow down (to 0.4 m/s), or by having it remain the same speed. Visual angle
was manipulated by having the pole expand or shrink such that its visual angle
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Table 2 List of conditions for Experiment 2

Visual angle-specified speed (m/s)

0.4 0.8 1.2

Disparity-specified
speed (m/s)

0.4 Speed up Disparity
manipulation

Conflict

0.8 Visual angle
manipulation

Constant speed Visual angle
manipulation

1.2 Conflict Disparity
manipulation

Slow down

was consistent with a pole of the original dimensions (radius 0.6 m, height 1.6 m)
moving at 0.4, 0.8, or 1.2 m/s. There were three possible manipulations for each
cue, which were fully crossed, for a total of nine manipulations. These conditions
are shown in Table 2.

Design Experiment 2 had a 3 (disparity) � 3 (visual angle) factorial design, with 8
trials per condition, for a total of 72 trials per participant. All variables were within-
subject, and trials were presented in a random order.

Data Analysis Data was filtered and differentiated as in Experiment 1. For each
trial, the mean change in the follower’s speed (�Speed, or �S) during the visual
manipulation was computed by subtracting the participant’s mean speed in the 2 s
interval from 1 s after the onset of the visual manipulation until its offset from their
mean speed in the 2 s interval prior to the manipulation. A positive value specifies
that the participant sped up during the manipulation. The mean of these �S values,
averaged across participants, was used as a measure of behavioral response to each
manipulation.

3.3 Results and Discussion

The mean �Speed values are shown in Fig. 3. In the visual angle manipulation,
participants speed up (�S D 0.13 m/s) relative to baseline (�S D�0.01 m/s)
when visual angle-specified speed increases, and slow down (�S D�0.29 m/s)
when visual angle-specified speed decreases. This is not the case for the
binocular disparity manipulations, however. There is no significant difference in
speed when disparity-specified speed increases (�S D�0.04 m/s) or decreases
(�S D�0.09 m/s) relative to baseline.

This same pattern of results is observed, regardless of whether a single
cue was manipulated, both cues were congruent, or the cues were in conflict.
When visual angle decreases, for example, mean changes in speed do not differ
when disparity increases (�S D 0.10 m/s), remains constant (�S D 0.12 m/s), or
decreases (�S D 0.17 m/s). A two-way ANOVA showed a significant main effect of
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Fig. 3 Mean �Speed values
for the nine visual
manipulation conditions,
across trials and participants.
Positive values represent an
increase in walking speed as a
result of the manipulation;
negative values represent a
decrease. Error bars represent
standard error of the mean

visual angle, F(2,81) D 99.55, p < .001, no main effect of disparity, F(2,81) D 1.14,
p > .05, and no interaction, F(4,81)D .12, p > .05.

These results suggest that visual angle is the primary source of optical informa-
tion used to regulate human following. The follower’s speed changed significantly
only when visual angle was manipulated. Changes in disparity did not result in
changes in speed. Even in the conflict condition, the behavioral response was always
in the same direction as visual angle, and it was the same magnitude as when
disparity was congruent or unchanged. This indicates that these two cues are not
combined.

It is important to note that only a limited range of values were tested. We
examined visual angle and disparity manipulations which corresponded to speed
changes of C 0.4 m/s and lasted 3 s. This created a rather large conflict between the
two sources of information, such that the visual system may have ‘vetoed’ [37] the
weaker disparity information rather than integrating it with visual angle. However,
the tested values are realistic for the case of pedestrian following, so the results
indicate that following is primarily controlled by changes in visual angle.

4 Experiment 3: Following in Small Crowds

4.1 Background

So far, we have provided evidence that pedestrian followers match leader speed
(Experiment 1) by nulling changes in visual angle (Experiment 2). In Experiment
3, our goal is to use this model to predict the acceleration of pedestrians in small
crowds. Specifically, we ask whether pedestrians follow neighbors in a crowd as
they do in dyads.

Small crowds represent a vital link between studies of individual locomotion and
larger crowds of hundreds or thousands of pedestrians, and have been the subject
of observational [38] and experimental [16, 39–41] investigations. Studying small
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crowds permits experimental control, which can be difficult in large crowds (see
[40]), and allows for a richer set of interactions between pedestrians than studies of
individuals or dyads.

We collected data from small crowds of four pedestrians walking toward a
common goal. In a preliminary analysis [42], we found evidence for collective
behavior, such as the adoption of a common speed and the appearance of a preferred
density. Here, we extend this analysis by applying the speed-matching model
derived from Experiments 1 and 2.

4.2 Methods

Participants 20 students (8 male, 12 female) participated in Experiment 3.

Apparatus Experiment 3 used the same apparatus as Experiment 1.

Procedure An overhead view of the experimental geometry is shown in Fig. 4.
Before each trial, participants were assigned to individual starting positions, at the
corners of a square, with lengths of 0.5, 1.0, 1.5, or 2.5 m on a side. This resulted in
four initial densities. Participants were instructed to walk toward one of three goal
posts (radius 0.15 m, height 2, 2 m apart).

To begin each trial, an experimenter verbally instructed the participants to begin
walking forward (“Start!”). When the last participant traveled 1 m from the starting
positions, an experimenter verbally instructed the participants toward one of the
three goals (e.g. “Three!”). Participants walked toward the goal and touched it with
their hand. An experimenter signaled that the trial was over (“Stop!”), and starting
positions were assigned for the next trial.

Design Experiment 3 had a 4 (density) � 3 (goal position) factorial design, with 8
trials per condition, for a total of 96 trials per group (480 total). All variables were
within-group, and trials were presented in a random order.

Data Analysis Data was filtered and differentiated as in Experiment 1.

4.3 Results and Discussion

The present analysis focuses on the goal 2 condition, in which the goal was located
directly ahead of the starting positions. Thus, the primary mode of coordination
between participants was in speed, rather than heading. Participants can be divided
into six pairs, which represent front-back, side-side, and diagonal couplings.
Correlations between the time-series of speed for all six pairs are high (M D 0.77,
SD D 0.23), providing evidence for coordination.
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Fig. 4 Overhead view of Experiment 3 geometry (not to scale)

Fig. 5 Time-series of acceleration (data and model predictions) for a single trial

The speed-matching model derived from Experiments 1 and 2 was used to predict
the acceleration of one participant as a function of another’s speed. Front-back
and diagonal couplings are assumed to be unidirectional, so the participant in front
always served as the ‘leader’ in the model. Side-side couplings are bidirectional, so
two simulations were performed and then averaged, with each participant serving as
‘leader’ and ‘follower,’ respectively. The speed-matching model performs as well
on the front-back pairs (RMSE D 0.19 m/s2, r D 0.78) as on the following data from
Experiment 1 (RMSE D 0.26 m/s2, r D 0.84) using fixed parameters. This shows
that our model generalizes to speed coordination in small crowds. Figure 5 shows a
plot of observed and predicted follower acceleration for 3 pairs of pedestrians.

Some caution is warranted in interpreting these findings. First, Experiment 3
included an acceleration at the beginning, rather than a speed change in the middle of
the trial, as in Experiment 1. This may have reduced variability in speed, leading to
improved model performance. Second, the common Go signal may have produced
spurious correlations. Despite these limitations, the model presented here represents
an important first step in linking individual locomotion with coordinated locomotion
in small crowds.
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5 Conclusion

Empirical validation is necessary for the development of realistic models of human
crowds. Here, we have presented a data-driven model of speed control in pedestrian
following, derived from experimental results on the behavioral strategy (Experiment
1) and visual information (Experiment 2) in leader-follower pairs. We then showed
that this model generalizes to more complex scenarios involving small crowds
(Experiment 3) with fixed parameters. Pedestrians appear to follow neighbors in
crowds just as they do in dyads.

This model exemplifies our bottom-up approach to understanding crowd dynam-
ics as an emergent phenomenon. By deriving empirical models of local pedestrian
interactions, we seek to account for crowd behavior while producing realistic
individual trajectories. The speed-matching component generates a form of spa-
tiotemporal coordination that many models [2] have taken to be a primary behavior,
along with attraction and repulsion. Our group has developed similar data-driven
components for steering and obstacle avoidance based on human experiments [22,
23]. Taken together, they are building toward a model of crowd dynamics in which
each individual component has been derived from data, rather than postulated ad
hoc [43].
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